• Title/Summary/Keyword: Silylated Waterborne Polyurethane

Search Result 4, Processing Time 0.016 seconds

Preparation of Silylated Waterborne Polyurethane/Silica Nanocomposites Using Colloidal Silica (Colloidal Silica를 이용한 Silylated Waterborne Polyurethane/Silica Nanocomposite의 제조)

  • Hong, Min Gi;Shin, Yong Tak;Choi, Jin Joo;Lee, Won Ki;Lee, Gyoung Bae;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.561-567
    • /
    • 2010
  • Silylated waterborne polyurethane was synthesized by capping the NCO groups of polyurethane prepolymer, prepared from isophrone diisocyanate, poly(tetramethylene glycol) and dimethylol propionic acid, with aminopropyl triethoxysilane. Subsequently, it was mixed with colloidal silica to prepare silylated waterborne polyurethane/silica nanocomposites. The average sizes of nanocomposite particles, measured by dynamic light scattering, showed almost the same value, irrespective of increasing silica content. However, the prepared nanocomposites showed better thermal stability than pure waterborne polyurethane.

Effect of Addition of Pentaerythritol Triacrylate and Silane Coupling Agents on the Properties of Waterborne Polyurethane (Pentaerythritol Triacrylate와 실란커플링제의 첨가가 수분산 폴리우레탄의 물성에 미치는 영향)

  • Shin, Yong Tak;Hong, Min Gi;Kim, Byung Suk;Lee, Won Ki;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.191-197
    • /
    • 2012
  • Acrylic terminated polyurethane prepolymers were synthesized by capping the NCO groups of polyurethane prepolymers, prepared from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA), with pentaerythritol triacrylate (PETA). Subsequently, silylated acrylic terminated prepolymers were prepared by capping the NCO groups of acrylic terminated polyurethane prepolymers with different types of silane coupling agents, glycidoxypropyl trimethoxysilane (GPTMS) or aminopropyl triethoxysilane (APS). The average particle size of pure waterborne polyurethane solution, measured by the dynamic light scattering method, was increased from 14.3 nm to 208.6 nm by adding PETA and APS. Also, the coating film of silylated acrylic terminated waterborne polyurethane showed better abrasion resistance and pencil hardness than that of pure waterborne polyurethane.

Preparation of Silylated Acrylic Polyurethane Dispersion Using Aminopropyl Triethoxysilane and Acrylate Monomers (Aminopropyl Triethoxysilane과 아크릴 단량체를 이용한 Silylated Acrylic Polyurethane Dispersion의 제조)

  • Kim, Byung Suk;Yun, Dong Gu;Yoo, Byung Won;Lee, Myung Goo;Byun, Tae Gang;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.639-645
    • /
    • 2012
  • Waterborne polyurethane dispersion (PUD) was synthesized by capping the NCO groups of polyurethane prepolymers, prepared from isophorone diisocyanate, polycarbonate diol and dimethylol propionic acid, with aminopropyl triethoxysilane (APS). Subsequently, silylated acrylic polyurethane dispersion was synthesized by reacting the PUD with the mixture of acrylate monomers, 2-hydroxyethyl methacrylate and methyl methacrylate. The average particle size of silylated acrylic polyurethane dispersion, measured by the dynamic light scattering method, was increased from 39.0 nm to 399.8 nm by increasing the addition amounts of APS. Also, the pencil hardness of coating films of silylated acrylic polyurethane dispersion was enhanced from B grade to F grade with increasing APS content.

Preparation and Properties of Aminosilane Terminated Waterborne Polyurethane (Aminosilane Terminated 수분산 폴리우레탄 코팅 용액의 제조 및 특성)

  • Shin, Yong Tak;Hong, Min Gi;Choi, Jin Joo;Lee, Won Ki;Lee, Gyoung Bae;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.434-439
    • /
    • 2010
  • NCO terminated polyurethane prepolymers were synthesized from isophorone diisocyanate(IPDI), poly(tetramethyleneglycol)(PTMG) and dimethylol propionic acid(DMPA). Subsequently, aminosilane terminated prepolymers were prepared by capping the NCO groups of polyurethane prepolymers with different moles of aminopropyl triethoxysilane(0~0.02 mole) as a coupling agent. The average particle size of the silylated polyurethane solutions increased with increasing APS content. Also, the prepared coating films showed better thermal stability and pencil hardness than pure waterborne polyurethane.