• Title/Summary/Keyword: Simple adaptive control

Search Result 282, Processing Time 0.029 seconds

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Shim, Kyu-Hong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.4-34
    • /
    • 2001
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition so called output feedback exponential passivity (OFEP). The designed high gain adaptive controller has simple structure and high robustness with regard to bounded disterbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we deal with a design problem of the robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances.

  • PDF

Motion Control of a Single Rod Cylinder-Load System Driven by a Proportional Directional Control Valve (비례방향제어밸브에 의해 구동되는 차동 실린더 부하계의 운동제어)

  • Lee, M.W.;Cho, S.H.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.81-85
    • /
    • 2010
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

  • PDF

The Design of Robust Direct Adaptive Controllers for Improved Transient Performance (과도성능 개선을 위한 강인한 직접 적응 제어기의 설계)

  • Lee, Hyo-Seop;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.510-513
    • /
    • 2002
  • In this paper, the robust adaptive controller design scheme is studied for nonlinear systems in the presence of bounded disturbances A new robust adaptive controller is designed using high-order neural networks, which avoids the singularity problem in adaptive nonlinear control. The stability of the resulting adaptive system with the proposed adaptive controller si guaranteed by suitably choosing the design parameters and initial conditions. I addition, the proposed adaptive controller provides improved transient performance and fast on-line adaptation. The ability and effectiveness of the proposed adaptive control scheme is shown trough simulations of a simple nonlinear system.

Adaptive model predictive control using ARMA models (ARMA 모델을 이용한 적응 모델예측제어에 관한 연구)

  • 이종구;김석준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.754-759
    • /
    • 1993
  • An adaptive model predictive control (AMPC) strategy using auto-regression moving-average (ARMA) models is presented. The characteristic features of this methodology are the small computer memory requirement, high computational speed, robustness, and easy handling of nonlinear and time varying MIMO systems. Since the process dynamic behaviors are expressed by ARMA models, the model parameter adaptation is simple and fast to converge. The recursive least square (RLS) method with exponential forgetting is used to trace the process model parameters assuming the process is slowly time varying. The control performance of the AMPC is verified by both comparative simulation and experimental studies on distillation column control.

  • PDF

Adaptive Control of Uncertain Systems without Knowing Perfect Uncertainty Bounds (불확실한 시스템의 적응제어)

  • Kim, Hong-Seok;Choi, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.57-61
    • /
    • 1989
  • An adaptive control scheme is presented for uncertain systems whose uncertaintiy bounds are expressed as a linear combination of unknown functions of special form. Both the states and the parameter estimate errors of the closed-loop system are proven to be bounded. The regulation errors can be made sufficiently small by adjusting the design parameters. An application of the proposed method to the position control of a simple pendulum is given.

  • PDF

A Study on Adaptive-Sliding Mode Control of SCARA Robot (스카라로보트의 적응-슬라이딩모드 제어에 관한 연구)

  • 윤대식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.148-153
    • /
    • 1999
  • In this paper, it is proposed the adaptive-sliding mode control technique which is new approach to implement the robust control of industrial robot manipulator with external disturbances and parameter uncertainties. Over the past decade, the design of advanced control systems for industrial robotic manipulators has been a very active area of research and two major design categories have emerged. Sliding mode control is a well-known technique for robust control of uncertain nonlinear systems. The robustness of sliding model controllers can be shown in continuous time, but digital implementation may not preserve robustness properties because the sampling process limits the existence of a true sliding mode. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The proposed control scheme has a simple structure is computationally fast and does not require knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results how that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control. Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications of industrial robot control system.

  • PDF

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

A Speed Control of the Switched Reluctance Motor using Adaptive Controller (적응제어기를 이용한 Switched Reluctance Motor의 속도제어)

  • Kim, Sung-Soo;Kim, Min-Seok;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.144-149
    • /
    • 2011
  • Currently, switched reluctance motors are studied to increase energy efficient. The switched reluctance motor is possible to control higher speed and torque than the induction motors and composition is simple. Current and rotor speed are considered to install the switched reluctance motor. In this paper, Simulink model of the switched reluctance motor is suggested and the adaptive controller is applied to the model for the speed control. Asymmetry converter including the IGBT is concerned with real-time control and the speed of switched reluctance motor is controlled by installing adaptive controller.

Direct Adaptive Control for Trajectory Tracking Control of a Pneumatic Cylinder (공기압 실린더의 궤적 추적 제어를 위한 직접 적응제어)

  • Lee, Su-Han;Jang, Chang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2926-2934
    • /
    • 2000
  • This study presents a direct adaptive controller which is derived by using Lyapunovs direct methods for trajectory tracking control of a pneumatic cylinder. The structure of the controller is very simple and computationally efficient because it does not use either the dynamic model or the parameter values of the pneumatic system. The bounded stability of the system is shown in the presence of the bounded unmodeled dynamics. The bounded size of tracking errors can be made arbitrarily small without giving andy influences on either input or output variables. The trajectory tracking performance and the stability of the control system is verified experimentally. The results of the experiments show that the proposed controller tracks the given trajectories, sine function and cycloidal function trajectories, more accurately than PD controller does, and it stabilizes the system and adaptive variables.

Periodic Adaptive Compensation of State-dependent Disturbance in a Digital Servo Motor System

  • Ahn, Hyo-Sung;Chen, YangQuan;Yu, Won-Pil
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • This paper presents an adaptive controller for the compensation of state-dependent disturbance with unknown amplitude in a digital servo motor system. The state-dependent disturbance is caused by friction and eccentricity between the wheel axis and the motor driver of a mobile robot servo system. The proposed control scheme guarantees an asymptotical stability for both the velocity and position regulation. An experimental result shows the effectiveness of the adaptive disturbance compensator for wheeled-mobile robot in a low velocity diffusion tracking. A comparative experimental study with a simple PI controller is presented.