• Title/Summary/Keyword: Simulated Heat Treatment

Search Result 93, Processing Time 0.021 seconds

Effects of special heat treatment on changes in the hardness of a metal-ceramic alloy during the firing process (금속-도재 보철용 합금의 열처리가 소성과정 중 경도 변화에 미치는 영향)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • Purpose: This study aimed to evaluate the effects of a special heat treatment on Pd-Au-Ag metal-ceramic alloy after degassing treatment and on changes in the hardness of the alloy during the firing process. Methods: Specimen alloys were cast and subjected to degassing at 900℃ for 10 minutes. These specimens were then subjected to a special heat treatment at 600℃ for 15 minutes in a dental porcelain furnace. Further, the specimens were subjected to simulated firing in the porcelain furnace. The resulting specimens were then tested for hardness, and changes in the microstructure were observed. Results: There was a decrease in the hardness of the alloy during the simulated firing of the cast alloy due to the coarsening of the particles. Meanwhile, additional heat treatment after degassing was found to play a crucial role in preventing a decrease in hardness. This treatment effectively suppressed the coarsening of the precipitates during repeated firing at high temperatures. Conclusion: Specific heat treatment of the Pd-Au-Ag metal-ceramic alloy prevented a decrease in its hardness and extended the lifespan of the metal-ceramic prosthesis.

Finite element analysis for surface hardening of SM45C round bar by diode laser (다이오드 레이저를 이용한 SM45C 환봉 표면경화 열처리의 유한요소해석)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Lee, Jae-Hoon;Suh, Jeong;Kim, Jong-Do
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.683-688
    • /
    • 2007
  • Surface heat treatment of SM45C round bar by diode laser was simulated to find it's condition by using commercial finite element code MARC. Due to axisymmetric geometry, a quarter of model for SM45C round bar was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat and mass density were given as a function of temperature. Rotation speed of round bar and feed rate of beam were considered to design heat source model. Shape parameter values of heat source were determined by beam profile. As results, Three dimensional heat source model for diode laser beam conditions of surface hardening has been designed by the comparison between the finite element analysis results and experimental data on SM45C round bar. Diode laser surface hardening for SM45C round bar was successfully simulated and it should be useful to determine optimal heat treatment condition.

  • PDF

Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain (연화 열처리 후 모의소성된 금속-세라믹용 Pd-Ag-Au계 합금의 후열처리에 의한 경화기전)

  • Kim, Sung-Min;Yu, Young-Jun;Cho, Mi-Hyang;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.42 no.2
    • /
    • pp.95-106
    • /
    • 2015
  • Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain was examined by observing the change in hardness, crystal structure and microstructure. By post-firing heat treatment of as-cast, solution treated and pre-firing heat treated specimens at $650^{\circ}C$ after casting, the hardness value increased within 10 minutes. Then, hardness consistently increased until 30 minutes, and gap of hardness value among the specimens was reduced. The increase in hardness after post-firing heat treatment was caused by grain interior precipitation in the matrix. The softening heat treatment did not affect the increase in hardness by post-firing heat treatment. The precipitated phase from the parent Pd-Ag-Au-rich ${\alpha}$ phase with face-centered cubic structure by post-firing heat treatment was $Pd_3$(Sn, In) phase with face-centered tetragonal structure, which has lattice parameters of $a_{200}=4.0907{\AA}$, $c_{002}=3.745{\AA}$. From above results, appropriate post-firing heat treatment in order to support the hardness of Pd-Ag-Au metal substructure was expected to bring positive effects to durability of the prosthesis.

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF

Development of the Diode Laser Heat Treatment Robot System Based on OLP Simulator (OLP 시뮬레이터 기반의 다이오드 레이저 열처리 로봇시스템 개발)

  • Park, Kee-Jin;Yoon, Sung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 2015
  • Heat treatment for car body molds is mainly a manual process performed by a worker. The performance of this process is affected by workers' skill level, and has limitation in maintaining uniform product quality. In this study, we developed a diode laser heat treatment robot system that implements an OLP type simulator to overcome the limitation of manual process, and to improve and stabilize the quality level. In addition, we verified the efficiency of the robot system and mechanism stability from the early stage through design verification and simulated analysis in the development stage. In addition, we carried out a field test to study the way to establish optimized D/B for diode laser heat treatment criteria for car body molds, such as heat treatment speed, interval, etc. via site experiment.

Construction of Abalone Sensory Texture Evaluation System Based on BP Neural Network

  • Li, Xiaochen;Zhao, Yuyang;Li, Renjie;Zhang, Ning;Tao, Xueheng;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.790-803
    • /
    • 2019
  • The effects of different heat treatments on the sensory characteristics of abalones are studied in this study. In this paper, the sensory evaluation of abalone samples under different heat treatment conditions is carried out, and the evaluation results are analyzed. The three-dimensional (3D) scanning and reverse engineering are used in tooth modeling of the sensory evaluation of abalone samples under different heat treatment conditions. Besides, the chewing movement models are simplified into three modes, including the cutting mode, compressing mode and grinding mode, which are simulated using finite element simulation. The elastic modulus of the abalone samples is obtained through the compression testing using a texture analyzer to distinguish their material properties under different heat treatments and to obtain simulated mechanical parameters. Finally, taking the mechanical parameters of the finite element simulation of abalone chewing as input and sensory evaluation parameters as the output, BP neural network is established in which the sensory texture evaluation model of abalone samples is obtained. Through verification, the neural network prediction model can meet the requirements of food texture evaluation, with an average error of 9.12%.

Effect of Post-Weld Heat Treatment on the Mechanical Properties and Microstructure of P-No. 1 Carbon Steels (P-No. 1 탄소강의 기계적 특성과 미세조직에 미치는 용접후열처리의 영향)

  • Lee, Seung-Gun;Kang, Yongjoon;Kim, Gi-Dong;Kang, Sung-Sik
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • This study aims to investigate the suitability of requirement for post-weld heat treatment(PWHT) temperature when different P-No. materials are welded, which is defined by ASME Sec. III Code. For SA-516 Gr. 60 and SA-106 Gr. B carbon steels that are typical P-No. 1 material, simulated heat treatment were conducted for 8 h at $610^{\circ}C$, $650^{\circ}C$, $690^{\circ}C$, and $730^{\circ}C$, last two temperature falls in the temperature of PWHT for P-No. 5A low-alloy steels. Tensile and Charpy impact tests were performed for the heat-treated specimens, and then microstructure was analyzed by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. The Charpy impact properties deteriorated significantly mainly due to a large amount of cementite precipitation when the temperature of simulated heat treatment was $730^{\circ}C$. Therefore, when dissimilar metal welding is carried out for P-No. 1 carbon steel and different P-No. low alloy steel, the PWHT temperature should be carefully selected to avoid significant deterioration of impact properties for P-No. 1 carbon steel.

Analysis of Dynamic Behavior of a Heat Recovery Steam Generator and Steam Turbine System (열회수 증기발생기와 증기터빈 시스템의 동적 거동 해석)

  • Park, Hyung-Joon;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.994-1001
    • /
    • 2000
  • The dynamic behavior of a single-pressure heat recovery steam generator and turbine system for the combined cycle power plant is simulated on the basis of one-dimensional unsteady governing equations. A water level control and a turbine power control are also included in the calculation routine. Transient response of the system to the variation of gas turbine exit condition is simulated and effect of the turbine power control on the system response is examined. In addition, the effect of the treatment of inertia terms(fluid inertia and thermal inertia of heat exchanger metal) on the simulated transient response is investigated.

A Study on Mechanical Stress Relleving in a Butt-Welded Pipe (파이프 용접에서 기계적 잔류응력 이완법에 관한 연구)

  • 양영수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • The heat transfer and thermal stress-distribution were numerically determined by using the finite element method for a butt-welded pipe. A mechanical stress relieving(MSR) treatment which has been frequently used in the fabrication of pressure vessels instead of the post weld heat treatment (PWHT) was also simulated to investigate its effect of reducing the residual stress in the welded zone by a mechanical loading.

  • PDF

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.