• 제목/요약/키워드: Sine Burst Test

검색결과 2건 처리시간 0.017초

저궤도 지구관측위성의 광학탑재체 지지구조물 동환경시험 결과분석 (Dynamic Test Results Assessment on the Optical Bench of LEO Satellite)

  • 김경원;김진희;이주훈;김선원;진익민;박종성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.242-245
    • /
    • 2006
  • This paper is an assessment on the dynamic test results of optical bench for LEO satellite. According to the design requirements, optical bench was designed and manufactured. Dynamic test was performed to verify stability of optical bench. Low level random vibration test, sine burst test and sine vibration test are carried out to identify dynamic characteristics and to verify static strength and safety under quasi-static load conditions. From the result it can be stated that the optical bench is well qualified under the launch environmental conditions.

  • PDF

마이크로중력 과학 임무 수행용 초소형 위성의 진동 해석 (Vibration Analysis of a Nanosatellite for Microgravity Science Missions)

  • 김진혁;장정익;박설현
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.104-110
    • /
    • 2019
  • A nanosatellite designed by the Korea Microgravity Science Laboratory (KMSL) is currently under development. The KMSL nanosatellite is designed to perform two different scientific missions in space. To successfully complete missions, a variety of tests must be conducted to verify the performance of the designed satellite before launch. As part of the qualification test campaign, the KMSL nanosatellite underwent high level vibrational tests (to comply with Falcon 9 qualification level) to demonstrate the integrity of the system. The purpose of this study is to demonstrate that the primary structure and all electronic and mechanical components can withstand the vibrations and the loads experienced during the launch period. To this end, the KMSL nanosatellite was exposed to static and dynamic loads and various types of vibrations that are inevitably produced during the space vehicle launch period. The vibration test results clearly demonstrated that all avionics and mechanical components can withstand the vibrations and the loads applied to the KMSL nanosatellite's body through a Pico-satellite Orbital Deployer (POD).