• Title/Summary/Keyword: Single crystals

Search Result 969, Processing Time 0.032 seconds

A Study on the Orientation Dependence of Plastic Deformation in NiAl Single Crystals by FEA (FEA를 이용한 NiAl 단결정 소성 변형의 결정 방향 의존에 관한 연구)

  • Yang, Chul-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.268-273
    • /
    • 2004
  • Deformation of single crystals was studied using finite element analysis to investigate the orientation dependence of plastic deformation observed in NiAl single crystals. Investigation of mechanical properties of single crystals is closely related with the understanding of deformation processes in single crystals. Orientation dependence of material behavior in NiAl single crystals was studied by rotating loading directions from 'hard' orientation. The maximum nominal compressed stress in NiAl single crystals was ranged in a quite wide scope depending on the misalignment from 'hard' orientation. As the compressed axis set closer to 'hard' orientation, the maximum nominal compressed stress rapidly increased and made <100> slips difficult to activate. Therefore, non-<100> slips will be activated instead of <100> slips for 'hard' orientation.

  • PDF

A Study of Deformation and Orientation Dependent Behavior in Single Crystals

  • Yang Chulho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • Deformations of single crystals were studied using finite element analysis to investigate the localized modes and the orientation dependence of plastic deformation observed in single crystals. Investigation of mechanical properties of single crystals is closely related with the understanding of deformation processes in single crystals. Localized bands such as shear and kink were studied and the material and geometric characteristics that influence the formation of such localized bands were investigated. Orientation dependence of material behavior in NiAl single crystals was studied by rotating slip directions from 'hard' orientation. The maximum nominal compressed stress in NiAl single crystals was widely ranged depending on the misalignment from 'hard' orientation. As the compression axis was set closer to 'hard' orientation, the maximum nominal compressed stress was rapidly increased and made <100> slips difficult to activate. Therefore, non-<100> slips will be activated instead of <100> slips for 'hard' orientation.

Y-Ba-Cu-O Single Crystals Growth by Skull Method (스컬(Skull)법에 의한 Y-Ba-Cu-O계 단결정 성장)

  • 정대식;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 1990
  • An attempt was made to grow Y-Ba-Cu-O single crystals by skull method(cold crucible process). Grown YBa2Cu3O7-x(YBC) single crystals were obtained from the upper part of the YBC solid mixture. There were plate-like YBC single crystals aligned with solidified flux along the crystal growth direction. Single crystal size was (5$\times$2$\times$0.2㎣) and was grown to a-b plane of YBC crystal structure which can flow super currents. Optical microscope and X-ray diffraction were employed characterize these microstructure and YBC single crystals.

  • PDF

Effect of the Electrode Type on the Dielectric and Piezoelectric Properties of Piezoelectric PMN-PZT Single Crystals (압전 PMN-PZT 단결정의 유전 및 압전 특성에 미치는 전극 종류의 영향)

  • Lee, Jong-Yeb;Oh, Hyun-Taek;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • The effect of the electrode type on the dielectric and piezoelectric properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ (PMN-PZT) single crystals was investigated in an effort to improve their properties for various piezoelectric applications. First, three different types of PMN-PZT single crystals [PMN-PZT-A (piezoelectrically soft type; dielectric constant ~ 10,000), PMN-PZT-B (piezoelectrically soft type; phase-transition temperature between the rhombohedral and tetragonal phases ($T_{RT}$) ~ $145^{\circ}C$), PMN-PZT-C (piezoelectrically hard type; high mechanical quality factor ($Q_m$) ~ 1,000)] were fabricated using the solid-state single crystal growth (SSCG) method. Then, four different types of electrodes [sputtered Au, sputtered Cr/Au, sputtered Ti/Au, and fired Ag] were formed on the single crystals, and their dielectric and piezoelectric properties were measured. The single crystals with a sputtered Ti/Au electrode showed the highest dielectric and piezoelectric constants but the lowest coercive electric field ($E_C$). The single crystals with a fired Ag electrode showed the lowest dielectric and piezoelectric constants but the highest coercive electric field ($E_C$). This dependence on the type of electrode was most significant in the piezoelectrically hard PMN-PZT-C single crystals. However, the effects of the electrode type on the phase transition temperatures ($T_C$, $T_{RT}$) and dielectric loss were negligible. These results clearly demonstrate that it is important to select an appropriate electrode so as to maximize the dielectric and piezoelectric properties of single crystals in each type of piezoelectric application.

Growth Properties of Tungsten-Bronze Sr1-xBaxNb2O6 Single Crystals (텅스텐 브론즈 Sr1-xBaxNb2O6 단결정의 성장 특성)

  • Joo, Gi-Tae;Kang, Bonghoon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.711-716
    • /
    • 2012
  • Tungsten bronze structure $Sr_{1-x}Ba_xNb_2O_6$ (SBN) single crystals were grown primarily using the Czochralski method, in which several difficulties were encountered: striation formation and diameter control. Striation formation occurred mainly because of crystal rotation in an asymmetric thermal field and unsteady melt convection driven by thermal buoyancy forces. To optimize the growth conditions, bulk SBN crystals were grown in a furnace with resistance heating elements. The zone of $O_2$ atmosphere for crystal growth is 9.0 cm and the difference of temperature between the melt and the top is $70^{\circ}C$. According to the growth conditions of the rotation rate, grown SBN became either polycrystalline or composed of single crystals. In the case of as-grown $Sr_{1-x}Ba_xNb_2O_6$ (x = 0.4; 60SBN) single crystals, the color of the crystals was transparent yellowish and the growth axis was the c-axis. The facets of the crystals were of various shapes. The length and diameter of the single crystals was 50~70 mm and 5~10 mm, respectively. Tungsten bronze SBN growth is affected by the temperature profile and the atmosphere of the growing zone. The thermal expansion coefficients on heating and on cooling of the grown SBN single crystals were not matched. These coefficients were thought to influence the phase transition phenomena of SBN.

Single Crystals for Functional Devices

  • Kim, You-Song
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.12a
    • /
    • pp.93-99
    • /
    • 1999
  • It is definite trend that the functional devices are to be integrated by miniaturizing of individual components. Bulk crystals turn into wafer form, while thin film of the functional materials is being fabricated for single and multi-layer devices. In addition, single crystals with multi-function performance would be desirable for further miniaturization. crystal growers have the responsibility for synthesis single crystals work to meet ever increasing requirement of future devices.

  • PDF

Single Crystal Growth Behavior in High-Density Nano-Sized Aerosol Deposited Films

  • Lim, Ji-Ho;Kim, Seung-Wook;Kim, Samjung;Kang, Eun-Young;Lee, Min Lyul;Samal, Sneha;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.488-495
    • /
    • 2021
  • Solid state grain growth (SSCG) is a method of growing large single crystals from seed single crystals by abnormal grain growth in a small-grained matrix. During grain growth, pores are often trapped in the matrix and remain in single crystals. Aerosol deposition (AD) is a method of manufacturing films with almost full density from nano grains by causing high energy collision between substrates and ceramic powders. AD and SSCG are used to grow single crystals with few pores. BaTiO3 films are coated on (100) SrTiO3 seeds by AD. To generate grain growth, BaTiO3 films are heated to 1,300 ℃ and held for 10 h, and entire films are grown as single crystals. The condition of grain growth driving force is ∆Gmax < ∆Gc ≤ ∆Gseed. On the other hand, the condition of grain growth driving force in BaTiO3 AD films heat-treated at 1,100 and 1,200 ℃ is ∆Gc < ∆Gmax, and single crystals are not grown.

Flux Growth of $CoFe_{1.9}Dy_{0.1}O_4$ Single Crystals and its Magnetic Properties

  • Kambale, Rahul C.;Song, K.M.;Hur, Namjung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.19-19
    • /
    • 2011
  • We studied the effect of Dy content on the magnetic properties of cobalt ferrite single crystal. The $CoFe_{1.9}Dy_{0.1}O_4$ single crystals were grown by the flux method by using $Na_2B_4O_{7.}10H_2O$ (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction test at room temperature confirmed the spinel cubic symmetry with lattice constant a = $8.42{\AA}$ of the single crystals. The presences of constitute elements (Co, Fe and Dy) was endorsedby EDAX analysis. The saturation magnetization (Ms) of $CoFe_{1.9}Dy_{0.1}O_4$ single crystals was measured and is found to be 72emu/g or equivalently $3.2{\mu}B$/f.u. at 300 K. The observed Ms and coercivity (Hc) is found to be lower than that of pure $CoFe_2O_4$.

  • PDF

Dielectric and Piezoelectric Properties of "Lead-free" Piezoelectric Rhombohedral Ba(Ti0.92Zr0.08)O3 Single Crystals

  • Lee, Jong-Yeb;Oh, Hyun-Taek;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals are fabricated using the cost-effective solid-state single crystal growth (SSCG) method; their dielectric and piezoelectric properties are also characterized. Measurements show that (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals have an electromechanical coupling factor ($k_{33}$) higher than 0.85, piezoelectric charge constant ($d_{33}$) of about 950 [pC/N], and piezoelectric voltage constant ($g_{33}$) higher than 40 [${\times}10^{-3}Vm/N$]. Especially the $d_{33}$ of (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals was by about six times higher than that of their ceramics. Because their electromechanical coupling factor ($k_{33}$) and piezoelectric voltage constant ($d_{33}$, $g_{33}$) are higher than those of soft PZT ceramics, it is expected that rhombohedral (001) $Ba(Ti_{0.92}Zr_{0.08})O_3$ single crystals can be used as "lead-free" piezoelectric materials in many piezoelectric applications such as actuator, sensor, and transducer.