• Title/Summary/Keyword: Single micropile

Search Result 4, Processing Time 0.022 seconds

Performance Evaluation of Waveform Micropile with Different Shapes by Centrifuge Test (원심모형실험을 이용한 파형 마이크로파일 형상에 따른 성능평가)

  • Jang, Young-Eun;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1049-1057
    • /
    • 2016
  • The waveform micropile is a type of foundation that has a single or multiple shear keys on the pile shaft, and it is constructed through a jet grouting method as a way to increase the shaft resistance of the bonded area between the pile and the soil. In this paper, a geotechnical centrifuge test was performed to study the axial performance of the waveform micropile from other models. The six test models consisted of three waveform micropiles with a single shear key at three different depths, a waveform micropile with multiple shear keys, a conventional micropile, and a jet grouting micropile. Based on the test results, it was clearly shown that the waveform micropile increased in its bearing capacity compared to the other models without the shear key. Additionally, it was observed that the confining pressure for the location of a shear key is directly related to the increase of the bearing capacity.

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Evaluation Method for Uplift Load-carrying Capacity of Inclined Group Micropiles in Dense Sand (조밀한 사질토지반에서 경사로 설치된 그룹 마이크로파일의 인발지지력 평가방법)

  • Kyung, Doohyun;Kim, Garam;Kim, Incheol;Lee, Junhwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In the present study, uplift load carrying behavior of micropiles with installation angle and pile spacing was investigated based on uplift load tests using single and group micropiles. In addition, evaluation methods of uplift load carrying capacity of group micropiles were proposed based on FHWA (2005) and Madhav (1987) and they were compared with test results to confirm the validity of proposed methods. From the test results, uplift load carrying capacities of single and group micropiles increased with the increase of the installation angle up to $30^{\circ}$, whose values also increased slightly with increasing pile spacing. For the proposed method based on FHWA (2005), the estimated values were similar to measured values up to $15^{\circ}$ of installation angle and 5D of pile spacing. For the proposed method based on Madhav (1987), on the other hand, it was observed that the estimated values were in good agreement with measured values in all installation conditions.