• Title/Summary/Keyword: Single mode optical fiber

Search Result 364, Processing Time 0.025 seconds

A Study of PMD Characteristic in Single Mode Optical Fiber (단일모드 광섬유에서의 편광모드분산 특성에 관한 연구)

  • 이청학;김성탁;김기대;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.201-204
    • /
    • 1999
  • Polarization mode dispersion (PMD) restrict the bend-width of single mode optical filer, and it is important parameter in the optical fiber having long-length. Although fiber has perfect circular symmetry, fiber bending, twisting and laws governing manufacture cause additional Polarization mode dispersion. The effect of polarization mode dispersion in general single mode fiber of long length is discussed in this paper. Measurement of PMD with random mode coupling were conducted in two kind of fibers using different laws governing manufacture and interferometric method.

  • PDF

Structural Strain Measurement Technique Using a Fiber Optic OTDR Sensor (광섬유 OTDR 센서에 의한 구조물의 변형률 측정 방법)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.388-399
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural strain measurement. The sensing fibers are manufactured 3 kinds of fibers: one is single mode fiber, and second is multimode fiber, and the third is low-cladding-index fiber. Fiber bending tests are performed to determine the strain sensitivity according to the strain of gage length of optical fibers. In the result of this experiments, the strain sensitivity of the single mode fiber was shown the highest value than others. The fiber optic strain probe was manufactured to verify the feasibility of the structural strain measurement. In this test, the fiber optic strain probe of the OTDR sensor could be easily made by the single mode fiber.

  • PDF

Quasi-Distributed Temperature Sensor Based on a V-Grooved Single-Mode Optical Fiber Covered with Ethylene Vinyl Acetate

  • Kim, Kwang Taek;Jeong, Seong-Gab
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.229-233
    • /
    • 2014
  • In this study, a V-grooved single-mode fiber along with optical time domain reflectometry (OTDR) as a quasi-distributed temperature sensor was investigated. The external medium used to fill the V-groove affects the optical mode. The V-groove was filled with ethylene vinyl acetate (EVA) because its transmittance was sensitive to temperature. The experimental results showed that the optical loss of the sensor varies with temperature, and the sensitivity depends on the depth of the V-groove.

Dispersion-Managed Links Formed of SMFs and DCFs with Irregular Dispersion Coefficients and Span Lengths

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • The various techniques to compensate for the signal distortion due to the group velocity dispersion (GVD) and nonlinear Kerr effects of optical fibers in the optical links have been proposed in the literature. We propose a flexible dispersion-managed link configuration consisted of single-mode and dispersion-compensating fibers with irregular dispersion coefficients over all fiber spans, and an optical phase conjugator added midway along the optical links. By distributing the lengths of the single mode fibers, we achieve a flexible optical link. The simultaneous ascending and descending distribution of the single-mode fiber lengths before and after the optical phase conjugator, respectively, best compensates the distorted wavelength division multiplexed signals in the optical link with non-fixed coefficients. Our result is consistent with those of our previous work on fixed coefficients. Therefore, to improve the compensation at any magnitude of dispersion coefficient, we must artificially distribute the lengths of the single-mode fibers into a dispersion-managed link.

Mode Size Converter based on Muitimode Fiber Taper (다중모드 광섬유 테이퍼를 이용한 모드 크기 변환기)

  • Kim, Kwang-Taek;Park, Kiu-Ha;Hyun, Woong-Keun;Jung, Yong-Min;Lee, Byeong-Ha
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.280-285
    • /
    • 2007
  • Based on the multimode fiber taper, a mode size converter for effective optical beam coupling between laser and optical fiber or between the two different optical fibers has been proposed and demonstrated. The device has a multimode input end and a single mode output end. The influence of various parameters, including device structure and launching conditions, on the coupling efficiency has been theoretically analyzed. The theoretical results revealed that the gaussian beam can be coupled into a single mode fiber without considerable insertion loss. The proposed multimode fiber taper has been fabricated using heating and pulling equipment incorporating two micro-torches. Experimental results showed that an optical beam with $50\;{\mu}m$ of large beam size was effectively coupled into single mode fiber through the multimode fiber taper. The insertion loss of the device was 1.3 dB.

Double clad fiber probe for fluorescence spectroscopy

  • Wang, Ling;Lee, Byeong-Ha
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.35-36
    • /
    • 2007
  • We report a probe using a single double clad fiber (DCF) for fluorescence spectroscopy. Bidirectional separate transmission for excitation and fluorescence light in a single fiber was implemented. A DCF coupler made by side-polished method could extract none but the collected fluorescence signals propagating in inner cladding mode, thereby diminishing the interference of silica background generated by the excitation in core mode. The experimental results show that the fluorescence spectra of biological tissues obtained using the DCF probes have much less silica background than using a standard multiple-mode fiber.

  • PDF

A Study on the Analysis of Faraday of Single Mode Optical Fiber. (단일 모드 광섬유의 Faraday Rotation 해석에 관한 연구)

  • 김기영;양길호;김은수;양인응
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1982.10a
    • /
    • pp.67-70
    • /
    • 1982
  • In this paper, the intrinsic birefringence and Faraday rotation of the single mode optical fiber have been investigated. On the analysis, the optical fiber has been modeled as a linear retarder and the intrinsic linear retardation of the fiber is approximatly found to be 2.57 deg/m from the measurement. Faraday ratation was analyzed as perturbation theory and Jones matrix.

  • PDF

A Study on the Birefringence Properties of Single Mode Optical Fiber (단일모우드 광섬유의 Birefringence특성에 관한 연구)

  • 김은수;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 1982
  • In this paper, the intrinsic birefringence and twist-induced rotation of the single mode optical fiber have been investigated. On the analysis, the optical fiber has been modeled as a linear retarder and the intrinsic linear retardation of the single mode optical fiber is approximately found to be 2.57'/m from the measurement. Theoretically analyzing the twist-induce rotation by the purturbation theory, it is found that the magnitude of the twist-induced rotation varies linearly with the twisted angle. And this theorerical result has been in good accord with the experimental result.

  • PDF

Fiber-Optic Temperature Sensor Based on Single Mode Fused Fiber Coupler

  • Kim, Kwang-Taek;Park, Kiu-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.152-156
    • /
    • 2008
  • This paper reports a fiber-optic temperature sensor using a single mode fused fiber coupler incorporating a thermo-optic external medium. The spectral transmission was altered by changing the refractive index of the external thermo-optic medium. A theoretical and experimental investigation was carried out with the aim of achieving high sensitivity. The measured sensitivity for the environmental temperature was as high as -1.5 $nm/^{\circ}C$.

In-line Variable Optical Attenuator Based on the Bending of the Tapered Single Mode Fiber

  • Kim, Kwang-Taek;Kang, Ji-Hoon;HwangBo, Seung;Im, Kie-Gon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.349-353
    • /
    • 2009
  • We propose a simple in-line variable optical attenuator (VOA) based on the bending effect of tapered single mode fibers. The influence of the taper structure and the reflective index of the external medium surrounding the taper region on the bending loss of the tapered fiber have been investigated experimentally. An attenuation range exceeding 35 dB and a very low excess loss of < 0.2 dB at 1550 nm were achieved. The measured polarization dependent loss of the present VOA at the attenuation level of 10 dB, 20 dB, and 30 dB were 0.1 dB, 0.2 dB, and 0.5 dB, respectively.