• Title/Summary/Keyword: Single thread

Search Result 80, Processing Time 0.023 seconds

A Study on Pullout Characteristics of Pedicle Screw Design Considering Anatomical Structure of the Lumbar Spine (척추의 해부학적 요소를 고려한 척추경 나사못 디자인의 Pullout 특성 연구)

  • Yoo, Kyeong-Joo;Park, Kwang-Min;Ahn, Kyoung-Gee;Ahn, Yoon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Recently, various types of pedicle screws have been developed considering the anatomical structure of the spine. The purpose of this study was to evaluate the pullout stiffness and strength of two types of commercial pedicle screws. The design of two type screws were single pitched thread (ST) pedicle screw and dual pitched thread (DT) pedicle screw, respectively. The tests were conducted in accordance with the ASTM standards using polyurethane (PU) test blocks which has anatomical structure of the spine. There was no significant difference in pullout stiffness between two types of screw. However, DT exhibited higher pullout strength than ST (p<0.05). Pedicle screw with dual pitched thread showed higher pullout strength without decrease in pullout stiffness compared to the standard pedicle screw. In conclusion, dual pitched thread design of the pedicle screw is considered to be more suitable than the single pitched thread for the anatomical structure of the spine.

THREE-DIMENTIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION FOR DIFFERENT IMPLANT THREAD SLOPE (임플랜트 나사선 경사각이 치조골 응력 분포에 미치는 영향)

  • Seo, Young-Hun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.482-491
    • /
    • 2007
  • Statement of problem: The screws of dental implant, having various thread types, can be categorized into different classes by their geometrical form, and each type transmits dissimilar amount and form of stress to alveolar bone. Purpose: The purpose of this study was to find an inclination angle of the screw thread that is favorable in distributing the stresses to alveolar bone. Material and methods: In this study, We used three dimensional finite element analysis with modeling having three types of thread inclination angles and fixed pitch-0.8 mm (single thread type with $3.8^{\circ}$ inclination, double thread type with $7.7^{\circ}$ inclination, triple thread type with $11.5^{\circ}$ inclination). Results: The results obtained from this study were as follows; 1. When the number of thread increased, the amount of Von-Mises stress was reduced since the generated stress was effectively distributed. 2. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants when comparing the magnitude of the maximum principal stress double thread had least amount of stress. This shows that the double thread screw gave best result. Conclusion: In conclusion, double, and triple thread screws were found to be more effective on distribution of the stress than the single thread screws. But, increasing in the thread inclination angle such as triple thread screw relate on the magnitude of the maximum principal stress affecting on the alveolar bone can become problematic. Thus, effective combination of thread number and thread inclination angle can help prolonging the longevity of implant.

Effective method of accessing multi volumes using SHORE thread (SHORE thread를 사용한 효과적인 다중 볼륨 접근 방법)

  • 안성수;최윤수;진두석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.46-48
    • /
    • 2002
  • 사용자에게 서비스 할 데이터가 많을 경우 여러 볼륨에 저장해서 처리해야 할 경우가 발생한다. 볼륨이 여러 개일 경우 효과적이고 효율적인 접근 방법이 필요하다. 본 논문에서는 SHORE 저장 시스템을 이용할 경우에 효과적이고 효율적인 접근 방법을 알아보고자 한다. single thread, multi thread, multi process, socket을 이용한 접근 방법을 살펴보고 multi thread를 이용하는 방법이 가장 효율적인 것을 실험 결과를 통해서 보인다. SHORE thread는 CPU bound에 관련된 job이 많은 경우는 process를 사용했을 때에 비해 큰 효과가 없으나 I/O bound에 관련에 것일 경우는 multi process를 사용한 것과 비슷한 효과가 있음을 알 수 있다.

  • PDF

An Implementation of Single Stack Multi-threading for Small Embedded Systems

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • In small embedded systems including IoT devices, memory size is very small and it is important to reduce memory amount for execution of application programs. For multi-threaded applications, stack may consume a large amount of memory because each thread has its own stack of sufficiently large size for worst case. This paper presents an implementation of single stack multi-threading, called SSThread (Single Stack Thread), by sharing a stack for all threads to reduce stack memory size. By using SSThread, multi-threaded applications can be programmed based on normal C language environment and there is no requirement of transporting multi-threading operating systems. It consists of several library functions and various C macro definitions. Even though some functional restrictions in comparison to operating systems supporting complete multi-thread functionalities, it is very useful for small embedded systems with tiny memory size and it is simple to setup programming environment for multi-thread applications.

Three-dimensional finite element analysis of stress distribution for different implant thread slope and implant angulation (임플란트 나사선 경사각과 식립 각도에 따른 3차원 유한요소 응력분석)

  • Seo, Young-Hun;Lim, Hyun-Pil;Yun, Kwi-Dug;Yoon, Suk-Ja;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Purpose: The purpose of this study was to find an inclination slope of the screw thread that is favorable in distributing the stresses to alveolar bone by using three dimensional finite element analysis. Materials and methods: Three types modelling changed implant thread with fixed pitch of 0.8 mm is the single thread implant with $3.8^{\circ}$ inclination, double thread implant with $7.7^{\circ}$ inclination and the triple thread implant with $11.5^{\circ}$ inclination. And three types implant angulation is the $0^{\circ}$, $10^{\circ}$ and $15^{\circ}$ on alveolar bone. The 9 modelling fabricated for three dimensional finite element analysis that restored prosthesis crown. The crown center applied on 200 N vertical load and $15^{\circ}$ tilting load. Results: 1. The more tilting of implant angulation, the more Von-Mises stress and Max principal stress is increasing. 2. Von-Mises stress and Max principal stress is increasing when applied $15^{\circ}$ tilting load than vertical load on the bone. 3. When the number of thread increased, the amount of Von-Mises stress, Max principal stress was reduced since the generated stress was effectively distributed. 4. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants. When comparing the magnitude of the maximum principal stress, the triple thread implant had a least amount of stress. This shows that the triple thread implant gave a best result. Conclusion: A triple thread implant to increase in the thread slope inclination and number of thread is more effective on the distribution of stress than the single and double thread implants especially, implant angulation is more tilting than $10^{\circ}$ on alveolar bone. Thus, effective combination of thread number and thread slope inclination can help prolonging the longevity of implant.

Separate Signature Monitoring for Control Flow Error Detection (제어흐름 에러 탐지를 위한 분리형 시그니처 모니터링 기법)

  • Choi, Kiho;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.225-234
    • /
    • 2018
  • Control flow errors are caused by the vulnerability of memory and result in system failure. Signature-based control flow monitoring is a representative method for alleviating the problem. The method commonly consists of two routines; one routine is signature update and the other is signature verification. However, in the existing signature-based control flow monitoring, monitoring target application is tightly combined with the monitoring code, and the operation of monitoring in a single thread is the basic model. This makes the signature-based monitoring method difficult to expect performance improvement that can be taken in multi-thread and multi-core environments. In this paper, we propose a new signature-based control flow monitoring model that separates signature update and signature verification in thread level. The signature update is combined with application thread and signature verification runs on a separate monitor thread. In the proposed model, the application thread and the monitor thread are separated from each other, so that we can expect a performance improvement that can be taken in a multi-core and multi-thread environment.

Development of Single-Channel Thread Sensor for Rotary Bobbin by Optical Sensing (광센서를 이용한 로터리 보빈용 단채널 밑실 감지기 개발에 관한 연구)

  • Jung, Yong-Sub;Cho, Janghyun;Byeon, Clare Chisu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1085-1091
    • /
    • 2014
  • We developed a single-channel thread sensor for a rotary bobbin by optical sensing and analyzed the signal characteristics. A specially designed mount made of ABS (acrylonitrile-butadiene-styrene) resin that encapsulated an optical sensor was fabricated by using a 3D printer and was attached to the rotary bobbin system. Stable control on a weaving machine was achieved by observing the difference in the output signals of an optical sensor system, which vary significantly according to the states of the thread in the weaving operation. The optical sensor effectively detects an unintentional thread cut and run-out during weaving fast enough to enable prompt stopping of the weaving machine, thereby minimizing the loss of expensive fabrics.

Study on the Effective Use of Thread in Agent Modeling (에이전트 모델링에서 효율적인 쓰레드 사용에 관한 연구)

  • Lim S.J.;Song J.Y.;Lee S.W.;Kim D.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.980-983
    • /
    • 2005
  • An agent Is an autonomous process that recognizes external environment, exchanges knowledge with external machines and performs an autonomous decision-making function in order to achieve common goals. The techniques fur tackling complexity in software need to be introduced. That is decomposition, abstraction and organization. Agent-oriented model ing has the merits of decomposition. In decomposition, each autonomous unit may have a control thread. Thread is single sequential flow in program. The use of thread in agent modeling has an important meaning in the performance of CPU and the relation of autonomous units.

  • PDF

Application of Data Processing Technology on Large Clusters to Distribution Automation System (대용량 데이터 처리기술을 배전자동화 시스템에 적용)

  • Lee, Sung-Woo;Ha, Bok-Nam;Seo, In-Yong;Jang, Moon-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.245-251
    • /
    • 2011
  • Quantities of data in the DMS (Distribution management system) or SCADA (Supervisory control and data acquisition) system is enormously large as illustrated by the usage of term flooding of data. This enormous quantity of data is transmitted to the status data or event data of the on-site apparatus in real-time. In addition, if GIS (Geographic information system) and AMR (Automatic meter reading), etc are integrated, the quantity of data to be processed in real-time increases unimaginably. Increase in the quantity of data due to addition of system or increase in the on-site facilities cannot be handled through the currently used Single Thread format of data processing technology. However, if Multi Thread technology that utilizes LF-POOL (Leader Follower -POOL) is applied in processing large quantity of data, large quantity of data can be processed in short period of time and the load on the server can be minimized. In this Study, the actual materialization and functions of LF POOL technology are examined.

An Interference Matrix Based Approach to Bounding Worst-Case Inter-Thread Cache Interferences and WCET for Multi-Core Processors

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • Different cores typically share the last-level cache in a multi-core processor. Threads running on different cores may interfere with each other. Therefore, the multi-core worst-case execution time (WCET) analyzer must be able to safely and accurately estimate the worst-case inter-thread cache interference. This is not supported by current WCET analysis techniques that manly focus on single thread analysis. This paper presents a novel approach to analyze the worst-case cache interference and bounding the WCET for threads running on multi-core processors with shared L2 instruction caches. We propose to use an interference matrix to model inter-thread interference, on which basis we can calculate the worst-case inter-thread cache interference. Our experiments indicate that the proposed approach can give a worst-case bound less than 1%, as in benchmark fib-call, and an average 16.4% overestimate for threads running on a dual-core processor with shared-L2 cache. Our approach dramatically improves the accuracy of WCET overestimatation by on average 20.0% compared to work.