• Title/Summary/Keyword: Sintering Ability

Search Result 46, Processing Time 0.034 seconds

Influence of CuO Dopants on the Sintering Ability and Phase Stability of Yttria-Stabilized Tetragonal Zirconia Polycrystals (Y-TZP의 燒結性 및 相 安定性에 대한 CuO添加의 影響)

  • Pee, Jae-Hwan;Kim, Yun-Hae;Motozo Hayakawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.35-40
    • /
    • 1999
  • Effects of CuO addition on the sintering ability and the phase stability of Y-TZP. (Yttria doped Tetragonal Zirconia Polycrystals) were studied. The CuO dopants were found to be quite effective in reducing the sintering temperature to obtain full density and refining the grain size. The maximum allowable concentration of the dopants was limited to 0.3%mol% for CuO to maintain fully tetragonal phase. With the addition of these dopants, the flexual strength decreased by 20% in comparison with the undoped specimen but the fracture toughness increased by 15%.

  • PDF

The Preparation of Seeded Alumina from Alkoxide: (II) Sintering (알콕사이드로부터 Seed가 첨가된 알루미나의 제조: (II) 소결특성)

  • 김창은;임광일;이해욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.480-488
    • /
    • 1992
  • The sintering behaviors of seeded alumina from alkoxide were studied. Room temp. desiccated powder exhibited better sintering behavior due to its packing ability and powder activity. $\alpha$-Al2O3 2wt% seeded compacts sintered with 97.5%TD, 1~3${\mu}{\textrm}{m}$ diameters at 140$0^{\circ}C$, 2hrs. Fe-nitrate doped compacts resulted in enhanced initial sintering behavior due to ionic effects of Fe3+ but failed to refined microstructure.

  • PDF

A study on the effects of compacting pressure on the electrical & sintering characteristics of Cu25Cr contact material (Cu25Cr 접점재료의 성형압력에 따른 소결 및 전기적 특성에 관한 연구)

  • 연영명;박홍태;오일성;이경행
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1065-1068
    • /
    • 2001
  • Effects of compacting pressure on the electrical and sintering characteristics of Cu25Cr contact material have been investigated. Cu25Cr contact materials were prepared by solid and liquid-phase sintering methods varying compacting pressure. Influence of compacting pressure on electrical characteristics were investigated in the cylindrical stainless-steel vessel using L-C resonant circuit. The physical and electrical properties of solid-phase sintered Cu25Cr material were found to be improved by increased compacting pressure. On the other hand, it was found that compacting pressure had little influence in case of liquid-phase sintered Cu25Cr material. After conditioning, contact resistance of Cu25Cr material was decreased regardless of compacting pressure. With increased compacting pressure, interrupting ability was shown to be increased.

  • PDF

The Properties and Manufacture of Porous Tantalum Powder for Capacitor (콘덴서용 다공성 Ta 분말의 제조 및 특성)

  • Lee, Sang Il;Lee, Seung Young;Won, Chang Whan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.326-334
    • /
    • 2010
  • Porous and net-shaped tantalum powder for a capacitor was formulated in a SHS (self-propagating high-temperature synthesis) process. However, this powder, which has weak strength among its particles and low flow ability, cannot be used for a capacitor. Therefore, this powder was sintered in a high-vacuum furnace to increase agglomeration to improve the flow ability, bonding strength among the particles, and shrinkage during pellet sintering. Finally, it was deoxidated with 2 wt% Mg powder to remove the increased surface oxygen that arose during the sintering process. The final product was analyzed in terms of its chemical and physical properties and was compared with a commercial powder used by a capacitor manufacturer.

Sintering of the Crankshaft Position Sensor Wheel

  • Park, J.K.;Park, H.S.;Park, J.S.;Song, K.W.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.401-402
    • /
    • 2006
  • All-surface, all-tooth machining and roll forming of cast iron have been used to manufacture the crankshaft position sensor wheel (CPSW). However, these methods pose many problems such as difficult processing, high material cost, and low tooth precision. Thus, we developed a sintered CPSW with an improved detection ability in order to resolve the problems related with the previous methods of manufacturing CPSW by simplifying the process flow and improving tooth precision. The sintering process is introduced in this study. We conducted an experiment to compare the sintered and roll formed products and analyzed the results to evaluate the reliability of the sintering process. Furthermore, we compared and analyzed stress and displacement in the sintered and roll formed products through the "Finite Element Method(FEM)". According to the experimental and FEM results, the sintered product showed satisfactory mechanical properties. It was less expensive to process and lighter and showed better quality than the roll formed product. The results of this study could be applied to design an optimum CPSW using the sintering process.

  • PDF

Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering (고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Ji-Young;Kim, Sang-Mi
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

Application of Mechanochemical Processing for Preparation of Si3N4-based Powder Mixtures

  • Sopicka-Lizer, Malgorzata;Pawlik, Tomasz
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2012
  • Mechanochemical processing (MCP) involves several high-energy collisions of powder particles with the milling media and results in the increased reactivity/sinterability of powder. The present paper shows results of mechanochemical processing (MCP) of silicon nitride powder mixture with the relevant sintering additives. The effects of MCP were studied by structural changes of powder particles themselves as well as by the resulting sintering/densification ability. It has been found that MCP significantly enhances reactivity and sinterability of the resultant material: silicon nitride ceramics could be pressureless sintered at $1500^{\circ}C$. Nevertheless, a degree of a silicon nitride crystal lattice and powder particle destruction (amorphization) as detected by XRD studies, is limited by the specific threshold. If that value is crossed then particle's surface damage effects are prevailing thus severe evaporation overdominates mass transport at elevated temperature. It is discussed that the cross-solid interaction between particles of various chemical composition, triggered by many different factors during mechanochemical processing, including a short-range diffusion in silicon nitride particles after collisions with other types of particles plays more important role in enhanced reactivity of tested compositions than amorphization of the crystal lattice itself. Controlled deagglomeration of $Si_3N_4$ particles during the course of high-energy milling was also considered.

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.472-478
    • /
    • 2006
  • The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.

Development of Measurement mechanism of Laser Beam Spot size for Industrial SFF system (산업용 SFF 시스템에서 Laser Beam Spot size 측정 메커니즘 개발)

  • Bae, Sung-Woo;Kim, Dong-Soo;Choi, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1383-1388
    • /
    • 2007
  • Accuracy and processing time are very important factors when the desired shape is fabricated with Selective Laser Sintering (SLS), one of Solid Freeform Fabrication (SFF) systems. In a conventional SLS process, laser spot size is fixed during laser exposing on the sliced figure. Therefore, it is difficult to accurately and rapidly fabricate the desired shape. In this paper, to deal with those problems an SFF system having ability of changing spot size is developed. The system provides high accuracy and optimal processing time. Specifically, a variable beam expander is employed to adjust spot size for different figures on a sliced shape. Finally, Design and performance estimation of the SFF system employing a variable beam expander are achieved and the mechanism will be addressed to measure the real spot size generated from the variable beam expander.

  • PDF

Development of Cast Iron Bonded Grinding Wheel by Using Spheroidization Mechanism of Graphite (흑연의 구상화기구를 이용한 주철본드 다이어몬드 숫돌의 개발)

  • 유기태;정해도;전형일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.61-64
    • /
    • 1995
  • Grinding has been adapted as a finishing process,which can carry out form and surface integrity at the same time. Recently, high efficient and precise grinding technique is required bacause the needs for functional parts such as silicon wafer,ceramic,and electric materials are increasing. Accordingly, the development of grinding wheel appropriate to that purpose is very important. So, in this paper we newly developed a diamond grinding wheel by applying the superior characteristics of spheroidal graphite of the cast iron sintered product. Especially, a electric resistance sintering method was applied in which rapid heat treatment is possible. Finally, we have achieved successful results that the grinding wheel has high hardness,durability and grinding ability,and satisfies above conditions.

  • PDF