• Title/Summary/Keyword: Sinusoidal Transform Coding

Search Result 8, Processing Time 0.036 seconds

Speech Quality of a Sinusoidal Model Depending on the Number of Sinusoids

  • Seo, Jeong-Wook;Kim, Ki-Hong;Seok, Jong-Won;Bae, Keun-Sung
    • Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.17-29
    • /
    • 2000
  • The STC(Sinusoidal Transform Coding) is a vocoding technique that uses a sinusoidal speech model to obtain high- quality speech at low data rate. It models and synthesizes the speech signal with fundamental frequency and its harmonic elements in frequency domain. To reduce the data rate, it is necessary to represent the sinusoidal amplitudes and phases with as small number of peaks as possible while maintaining the speech quality. As a basic research to develop a low-rate speech coding algorithm using the sinusoidal model, in this paper, we investigate the speech quality depending on the number of sinusoids. By varying the number of spectral peaks from 5 to 40 speech signals are reconstructed, and then their qualities are evaluated using spectral envelope distortion measure and MOS(Mean Opinion Score). Two approaches are used to obtain the spectral peaks: one is a conventional STFT (Short-Time Fourier Transform), and the other is a multiresolutional analysis method.

  • PDF

2.4kbps Speech Coding Algorithm Using the Sinusoidal Model (정현파 모델을 이용한 2.4kbps 음성부호화 알고리즘)

  • 백성기;배건성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.196-204
    • /
    • 2002
  • The Sinusoidal Transform Coding(STC) is a vocoding scheme based on a sinusoidal model of a speech signal. The low bit-rate speech coding based on sinusoidal model is a method that models and synthesizes speech with fundamental frequency and its harmonic elements, spectral envelope and phase in the frequency region. In this paper, we propose the 2.4kbps low-rate speech coding algorithm using the sinusoidal model of a speech signal. In the proposed coder, the pitch frequency is estimated by choosing the frequency that makes least mean squared error between synthetic speech with all spectrum peaks and speech synthesized with chosen frequency and its harmonics. The spectral envelope is estimated using SEEVOC(Spectral Envelope Estimation VOCoder) algorithm and the discrete all-pole model. The phase information is obtained using the time of pitch pulse occurrence, i.e., the onset time, as well as the phase of the vocal tract system. Experimental results show that the synthetic speech preserves both the formant and phase information of the original speech very well. The performance of the coder has been evaluated in terms of the MOS test based on informal listening tests, and it achieved over the MOS score of 3.1.

Detection and Synthesis of Transition Parts of The Speech Signal

  • Kim, Moo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.234-239
    • /
    • 2008
  • For the efficient coding and transmission, the speech signal can be classified into three distinctive classes: voiced, unvoiced, and transition classes. At low bit rate coding below 4 kbit/s, conventional sinusoidal transform coders synthesize speech of high quality for the purely voiced and unvoiced classes, whereas not for the transition class. The transition class including plosive sound and abrupt voiced-onset has the lack of periodicity, thus it is often classified and synthesized as the unvoiced class. In this paper, the efficient algorithm for the transition class detection is proposed, which demonstrates superior detection performance not only for clean speech but for noisy speech. For the detected transition frame, phase information is transmitted instead of magnitude information for speech synthesis. From the listening test, it was shown that the proposed algorithm produces better speech quality than the conventional one.

2.4kbps Speech Coding Algorithm Using the Sinusoidal Model (정현파 모델을 이용한 2.4kbps 음성부호화 알고리즘)

  • 백성기;배건성
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.123-126
    • /
    • 2000
  • STC(Sinusoidal Transform Coding) 방식은 음성신호의 주파수 영역에서 스펙트럼 피크치들을 정현파로 모델링하여 합성하는 방식을 말한다. 저전송률 STC 방식에서는 전송되는 정보량을 줄이기 위해 스펙트럼 피크를 대신해 음성신호의 스펙트럼 포락선 정보와, 피치정보를 이용하여 얻어지는 고조파 성분들을 정현파로 모델링하여 음성을 합성한다. 본 논문에서는 음성신호의 정현파 모델에 기반하여 2.4kbps 전송속도를 갖는 음성부호화 알고리즘을 제안하였으며, 실험결과로 합성음의 파형과 스펙트럼 특성, 위상특성, 그리고 MOS(Mean Opinion Score) 테스트를 이용한 합성음의 음질을 비교/분석 하였다.

  • PDF

Modified Generic Mode Coding Scheme for Enhanced Sound Quality of G.718 SWB (G.718 초광대역 코덱의 음질 향상을 위한 개선된 Generic Mode Coding 방법)

  • Cho, Keun-Seok;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.119-125
    • /
    • 2012
  • This paper describes a new algorithm for encoding spectral shape and envelope in the generic mode of G.718 super-wide band (SWB). In the G.718 SWB coder, generic mode coding and sinusoidal enhancement are used for the quantization of modified discrete cosine transform (MDCT)-based parameters in the high frequency band. In the generic mode, the high frequency band is divided into sub-bands and for every sub-band the most similar match with the selected similarity criteria is searched from the coded and envelope normalized wideband content. In order to improve the quantization scheme in high frequency region of speech/audio signals, the modified generic mode by the improvement of the generic mode in G.718 SWB is proposed. In the proposed generic mode, perceptual vector quantization of spectral envelopes and the resolution increase for spectral copy are used. The performance of the proposed algorithm is evaluated in terms of objective quality. Experimental results show that the proposed algorithm increases the quality of sounds significantly.

Method of a Multi-mode Low Rate Speech Coder Using a Transient Coding at the Rate of 2.4 kbit/s (전이구간 부호화를 이용한 2.4 kbit/s 다중모드 음성 부호화 방법)

  • Ahn Yeong-uk;Kim Jong-hak;Lee Insung;Kwon Oh-ju;Bae Mun-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.131-142
    • /
    • 2005
  • The low rate speech coders under 4 kbit/s are based on sinusoidal transform coding (STC) or multiband excitation (MBE). Since the harmonic coders are not efficient to reconstruct the transient segments of speech signals such as onsets, offsets, non-periodic signals, etc, the coders do not provide a natural speech quality. This paper proposes method of a efficient transient model :d a multi-mode low rate coder at 2.4 kbit/s that uses harmonic model for the voiced speech, stochastic model for the unvoiced speech and a model using aperiodic pulse location tracking (APPT) for the transient segments, respectively. The APPT utilizes the harmonic model. The proposed method uses different models depending on the characteristics of LPC residual signals. In addition, it can combine synthesized excitation in CELP coding at time domain with that in harmonic coding at frequency domain efficiently. The proposed coder shows a better speech quality than 2.4 kbit/s version of the mixed excitation linear prediction (MELP) coder that is a U.S. Federal Standard for speech coder.

Matching Pursuit Estimation and Quantizer Design for Sinusoidal Model-based Coder (정현파 모델 부호화기를 위한 MP(Matching Pursuit) 알고리즘과 파라미터 양자화기)

  • Ahn Yeong-Uk;Jeong Gyu-Hyeok;Kim Jong-Hak;Yang Yong-Ho;Lee In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.402-409
    • /
    • 2005
  • In this paper. we propose a coding method using a matching pursuit algorithm in a strongly periodic highband signal. Also. we propose an efficient quantizer for the estimated parameters : spectral magnitude and phase. Based on the error concealment principle and sinusoidal model. the MP algorithm requires the high-precision pitch period estimation. To estimate more accurate pitch period. the refined pitch obtained from lowband speech is used. which increases the efficiency of bit allocation. The spectral magnitude parameters are quantized by the method which is combined with MDCT (Modified Discrete Cosine Transform) and multi-stage structure. The spectral phase quantizer uses the $2{\pi}$ modular characteristic of phases and the weighted function by spectral magnitudes. To evaluate the efficiency of the proposed method. we applied it to analysis-by-synthesis system. Furthermore we suggest the possibillity of scalable wideband speech codecs based on band-split structure.

Fast Harmonic Synthesis Method for Sinusoidal Speech-Audio Model (정현파 음성-오디오 모델의 빠른 하모닉 합성 방법)

  • Kim, Gyu-Jin;Kim, Jong-Hark;Jung, Gyu-Hyeok;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.109-116
    • /
    • 2007
  • Most harmonic synthesis methods using phase information employ a quadratic or cubic phase interpolation. The methods are computationally expensive to implement because every component sinewave must be synthesized on a per sample basis. In this paper, we propose a fast harmonic synthesis method for sinusoidal speech/audio coding based on the quadratic and cubic phase function to overcome the complexity problem. To derive the fast harmonic synthesis method, we define the over-sampling function and phase modulation function by constraining the parameter of phase function to be independent for harmonic index and derive the fast synthesis method using IFFT. Experimental results show that the proposed method significantly reduce the complexity of conventional cosine synthesis method while maintaining the performance.