• Title/Summary/Keyword: Skeg

Search Result 36, Processing Time 0.03 seconds

Grid Generation and flow Analysis around a Twin-skeg Container Ship (Twin-skeg형 컨테이너선 주위의 격자계 생성과 유동 해석)

  • 박일룡;김우전;반석호
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Twin-skeg type stern shapes are recently adopted for very large commercial ships. However it is difficult to apply a CFD system to a hull form having twin-skeg, since grid topology around a twin-skeg type stern is more complicated than that of a conventional single-screw ship, or of an open-shaft type twin-screw ship with center-skeg. In the present study a surface mesh generator and a multi-block field grid generation program have been developed for twin-skeg type stern. Furthermore, multi-block flow solvers are utilized for potential and viscous flow analysis around a twin-skeg type stern The present computational system is applied to a 15,000TEU container ship with twin-skeg to prove the applicability. Wave profiles and wake distribution are calculated using the developed flow analysis tools and the results are compared with towing tank measurements.

Numerical Analysis of Flow Characteristics of a Twin-skeg Container Ship with Variation of Stern Hull Shape (쌍축 컨테이너선의 선미선형 변화에 따른 유동 특성에 대한 수치해석)

  • Kim, Hee-Taek;Van, Suak-Ho;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.551-563
    • /
    • 2007
  • Numerical analysis for flow characteristics of a twin skeg container ship was carried out according to skeg vertical angles($0^{\circ}$, $10^{\circ}$, $20^{\circ}$) and skeg distances(16m, 20m, 24m) by using a commercial CFD code, FLUENT. Computed: pressure distributions, wake distributions and resistance coefficients have been compared with experimental and WAVIS results carried out by MOERI. Flow characteristics from numerical analysis such as nominal wake fractions, wake distribution and directions of the transverse vectors give good agreement with WAVIS results, even though there are quantitative discrepancy comparing with experimental measurements at the propeller plane. It is found that the better resistance performance can be obtained with the increase of the skeg vertical angle and the decrease of the skeg distance, which are mainly caused by viscous pressure resistance due to the skeg form and pressure recovery around the skeg. In addition, a vertical angle of the skeg gives more effect to the resistance coefficient comparing with the skeg distance. On the basis of results of the present study, it shows that numerical analysis using the commercial code, FLUENT, is useful and efficient tool for the evaluation of the complex stern hull form with twin-skegs.

Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

  • Kim, Keunjae;Tillig, Fabian;Bathfield, Nicolas;Liljenberg, Hans
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.392-405
    • /
    • 2014
  • SSPA experiences a growing interest in twin skeg ships as one attractive green ship solution. The twin skeg concept is well proven with obvious advantages for the design of ships with full hull forms, restricted draft or highly loaded propellers. SSPA has conducted extensive hull optimizations studies of LNG ships of different size based on an extensive hull data base with over 7,000 models tested, including over 400 twin skeg hull forms. Main hull dimensions and different hull concepts such as twin skeg and single screw were of main interest in the studies. In the present paper, one twin skeg and one single screw 170 K LNG ship were designed for optimally selected main dimension parameters. The twin skeg hull was further optimized and evaluated using SHIPFLOW FRIENDSHIP design package by performing parameter variation in order to modify the shape and positions of the skegs. The finally optimized models were then built and tested in order to confirm the lower power demand of twin skeg designed compaed with the signle screw design. This paper is a full description of one of the design developments of a LNG twin skeg hull, from early dimensional parameter study, through design optimization phase towards the confirmation by model tests.

Skeg이 부선의 선회운동과 예인장력에 미치는 영향

  • Lee, Sang-Min;Lee, Sang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.346-348
    • /
    • 2011
  • 해상에서 예부선이 항행시 부선의 선회운동으로 인하여 예부선의 안전운항에 많은 어려움을 겪고 있다. 본 연구에서는 안전한 예항업무를 위하여 실무에서 많이 사용되고 있는 2가지 부선 모델을 대상으로 skeg의 설치 유무 및 skeg의 설치 위치에 의한 부선의 선회운동과 이에 따른 예인장력을 알아보기 위해 정수중에서의 수조실험을 실행하였다. 실험결과 예인삭의 선회각도는 skeg을 설치하지 않았을 때 가장 크게 나타났고, center skeg을 설치했을 때부터 작아지기 시작하여 side skeg을 설치했을 때 예인삭의 선회각도가 급격히 작아지는 것으로 파악되었으며, 이러한 특성은 선수형상에 따라 조금씩 다르게 나타나고 있음을 확인하였다. 또한 예인삭의 선회각도가 커질수록 예인장력이 커지는 것을 알 수 있었다. 따라서 부선에 skeg을 설치하여 운항하는 것이 부선의 선회 운동을 감소시켜 최종적으로 예인장력이 작아지게 하여 안전예항업무에 도움이 될 것으로 판단된다.

  • PDF

The Stern Hull Form Design using the Flow Analysis around Stern Skeg (선미 스케그 주위의 유동 분석에 의한 선미 형상 설계)

  • Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The optimized distance between skegs and angle of the skeg for a standard twin-skeg type LNG carrier were presented using the CFD and model tests. The evaluation method of self-propulsion performance was derived based on the results of CFD and confirmed the validity through model tests. The analyses to assess self-propulsion performance using CFD were shown by flow line patterns on the skeg surface, nominal wake distribution in the propeller plane and the evaluation for flow balance around stern skegs. The optimized ship that was applied to the optimized two design parameters in stern skeg arrangement for target ship was derived in this work. Finally speed performance of mother ship which is existing ship and optimized ship were compared through CFD and model tests. And the usefulness about the evaluation method of self-propulsion performance was reconfirmed.

Numerical Computation for the Comparison of Stern Flows around Various Twin Skegs

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Choi, Young-Bok;Park, No-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • Numerical analysis of viscous flow around twin-skeg hull forms was conducted according to the variations of distance between skegs and vertical skeg inclinations by using a hydrodynamic analysis system, WAVIS. Six twin-skeg hull forms were derived by combining three distances between skegs (16m, 20m, 24m) and four vertical skeg angles ($0^{\circ},\;10^{\circ},\;15^{\circ},\;20^{\circ}$). It is found that the better resistance performance can be obtained with larger vertical skeg angle and smaller skeg distance for the present test cases. It also can be seen that the same trend is true for the nominal wake distributions in the propeller plane. Those tendencies were confirmed by the experimental results of MOERI. It is shown that numerical analysis can be a useful and practical tool for the evaluation and improvement of hydrodynamic performances for the complex stern hull forms with twin skegs.

Optimization of a twin-skeg container vessel by parametric design and CFD simulations

  • Chen, Jingpu;Wei, Jinfang;Jiang, Wujie
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.466-474
    • /
    • 2016
  • The model tests results for the original lines of an 10000TEU container vessel show that the delivered power is higher and could not satisfy the requirement of energy saving effects and design targets. In this paper, the lines optimization of the 10,000 twin-skeg container vessel was carried out by parametric modeling and CFD simulations. At first, the CFD methods for twin-skeg hull form were validated by the comparison with the experimental results. Then more than one hundred parameters were adopted for the establishment of the fully parametric model. Based on the parametric model of the twin-skeg container vessel, the preliminary optimization was carried out by tight coupling of FRIENDSHIP-FRAMEWORK with potential flow of SHIPFLOW. Then several important parameters related to the after part of twin-skeg vessel were investigated by viscous flow computation. The final optimized variant PM11, which the total resistance was reduced by about 8.3% in model scale, is obtained within the constraints of general arrangement. And the model tests for variant PM11 was carried out in CSSRC, which shows that the resistance of optimized variant PM11 is decreased by about 8.6%.

Computation of Flow around a Container Ship with Twin-Skegs using the CFD (CFD를 이용한 쌍축 컨테이너선 주위의 유동계산)

  • Kim, Hee-Taek;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.370-378
    • /
    • 2007
  • In this study. a numerical analysis has been performed for the turbulent flow around a 15,000TEU twin-skeg container ship using a commercial CFD code. FLUENT. The computed results have been compared with the model test data from MOERI. We investigated viscous resistance coefficient. wake distribution and characteristics of the shear flow according to the grid numbers. Although the free surface is approximated by the plane of symmetry in this work. the calculated axial velocity and transverse vector show a good agreement with the MOERI experimental data except for the region of 0.9 level of axial velocity at the propeller plane. The numerical analysis show that commercial CFD code is useful tool for the evaluation of complex hull form with twin-skegs.

A study on the appropriate shape and size of skeg for the incinerator mounted circular barge (도서순회 해상소각 바지선의 적정 스케그 형상및 크기에 관한 연구)

  • 이귀주;이건철
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.100-106
    • /
    • 1997
  • Despite various devices have been developed and applied to stabilize the yaw motion, the superiority of twin skeg over other equi-functioned appendages has been recognized so far. In many cases, these skegs were installed with insufficient study and analysis for design, and this leads to the worse performance of their resistance and course keeping than required. Experimental studies on the effect of various kinds of anti-yawing skegs to the course keeping stability and on the additional resistance caused by them were carried out in the circulating water channel(CWC) at Chosun University(CU). Course keeping stability tests for four different size of skegs, resistance tests for three different shapes of skeg(including deformed skegs) were performed systematically. And the effect of angle of skegs on resistance was studied at the final stage.

  • PDF

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.