• Title/Summary/Keyword: Skin Marker Displacement

Search Result 2, Processing Time 0.015 seconds

Application of Compensation Method of Motion Analysis Error Using Displacement Dependency between Anatomical Landmarks and Skin Markers Due to Soft Tissue Artifact (연조직 변형에 의한 해부학적 지표와 피부마커의 변위 상관성을 이용한 동작분석 오차 보정 방법의 적용)

  • Ryu, Taebeum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.24-32
    • /
    • 2012
  • Of many approaches to reduce motion analysis errors, the compensation method of anatomical landmarks estimates the position of anatomical landmarks during motion. The method models the position of anatomical landmarks with joint angle or skin marker displacement using the data of the so-called dynamic calibration in which anatomical landmark positions are calibrated in ad hoc motions. Then the anatomical landmark positions are calibrated in target motions using the model. This study applies the compensation methods with joint angle and skin marker displacement to three lower extremity motions (walking, sit-to-stand/stand-to-sit, and step up/down) in ten healthy males and compares their performance. To compare the performance of the methods, two sets of kinematic variables were calculated using different two marker clusters, and the difference was obtained. Results showed that the compensation method with skin marker displacement had less differences by 30~60% compared to without compensation. And, it had significantly less difference in some kinematic variables (7 of 18) by 25~40% compared to the compensation method with joint angle. This study supports that compensation with skin marker displacement reduced the motion analysis STA errors more reliably than with joint angle in lower extremity motion analysis.

Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy (전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰)

  • Cho, Jeong-Hee;Lee, Sang-Kyu;Kim, Sei-Joon;Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Purpose: The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Materials and Methods: Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours and then the radiation therapist registered the MVCT images with the CT simulation images based on the bone based, rectal balloon based and GTV based respectively and registered image was compared with each others. The average and standard deviation of each X, Y, Z and rotation from the initial planning center was calculated for each patient. The image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours. Results: There was a significant difference in the mean variations of the rectal balloon among the methods. Statistical results based on the bone fusion shows that maximum x-direction shift was 8 mm and 4.2 mm to the y-direction. It was statistically significant (P=<0.0001) in balloon based fusion, maximum X and Y shift was 6 mm, 16mm respectively. One patient's result was more than 16 mm shift and that was derived from the rectal expansions due to the bowl gas and stool. GTV based fusion results ranging from 2.7 to 6.6 mm to the x-direction and 4.3$\sim$7.8 mm to the y-direction respectively. We have checked rotational error in this study but there are no significant differences among fusion methods and the result was 0.37$\pm$0.36 in bone based fusion and 0.34$\pm$0.38 in GTV based fusion.

  • PDF