• Title/Summary/Keyword: Slab bridge

Search Result 418, Processing Time 0.029 seconds

Equivalent boundary conditions to analyze the realistic fatigue behaviors of a bridge RC slab

  • Khan, Arslan Q.;Deng, Pengru;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.369-383
    • /
    • 2022
  • In this study, an equivalent boundary conditions (BCs) determination method is developed numerically for a panel reinforced concrete (RC) slab to realistically analyze the deformation and fatigue behaviors of a bridge RC slab. For this purpose, a finite element analysis of a bridge RC slab is carried out beforehand to calculate the stiffness of the bridge RC slab, and then the equivalent BCs for the panel RC slab are determined to achieve the same stiffness at the BCs to the obtained stiffness of the bridge RC slab at the corresponding locations of the bridge RC slab. Moreover, for the simulation of fatigue behaviors, fatigue analysis of the panel RC slab is carried out employing a finite element method based on a numerical model that considers the bridging stress degradation. Both the determined equivalent BCs and the BCs that have been typically applied in past studies are employed. The analysis results confirm that, in contrast to the panel RC slab with typically used BCs, the panel RC slab with equivalent BCs simulate the same bending moment distribution and deformation behaviors of the bridge RC slab. Furthermore, the equivalent BCs reproduce the extensive grid crack pattern in the panel RC slab, which is alike the pattern normally witnessed in a bridge RC slab. Conclusively, the panel RC slab with equivalent BCs behaves identical to the bridge RC slab, and, as a result, it shows more realistic fatigue behaviors observed in the bridge RC slab.

Behavior of Fastening system of HSR bridge ends deck on Slab Track installed Bridge (슬래브궤도가 부설된 고속철도 교량단부 체결장치의 거동)

  • Chun, Dae-Sung;Choi, Jung-Youl;An, Hea-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1637-1646
    • /
    • 2008
  • Deformations of bridge deck ends on abutment can cause extreme deformations on track. Especially, since slab track was fixed onto the bridge deck slab on concrete slab track installed bridges, deformations of bridge deck ends directly affect the slab track behavior, and thus these interactions can bring about the premature failure of rail fastenings or other deteriorations to lower the serviceability. In this study, a foreign standard to evaluate forces on track components caused by the track-bridge interactions and the behavior of bridge deck ends was investigated and for real scale bridges. It was found that rail support spring coefficients, as well as toe loads, support spacing were very important parameters.

  • PDF

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.

Live Load Distribution of Prestressed Concrete Girder Bridge with Curved Slab

  • Park Sun-Kyu;Kim Kwang-Soo;Kim Jin-Ho;Choi Jung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.709-717
    • /
    • 2004
  • The existing AASHTO Standard Specification have some inadequacies in expressing wheel load distribution of bridge which has specific shape of curved bridge instead of straight bridge. Thus, this research presented the finite element analysis and modelling technique of prestressed concrete girder bridge having curved slab and the expression of wheel load distribution was suggested as the ratio of bending moment utilizing the result of finite element analysis of prestressed concrete girder bridge having cowed slab. The considered parameter of girder distribution expression is the curvature of slab, span length, girder space, cross beam space and number of lanes. Though the suggested girder distribution expression is generally underestimated below AASHTO Standard Specification, once the curvature of slab increases, the suggested expression gets larger than AASHTO LRFD Standard Specification.

Analysis and Prediction of Highway Bridge Deck Slab Deterioration (고속도로 교량 바닥판 열화분석 및 추정)

  • Lee, Il-Keun;Kim, Woo-Seok;Kang, Hyeong-Taek;Seo, Jung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.68-75
    • /
    • 2015
  • This study established key factors causing deck slab deterioration based on GPR database of 747 highway bridges, and predicted deck slab damage rates with respect to bridge service life. To minimize the influence of bridge service life on deck slab deterioration, the deck slab damage rate database was corrected based on a linear regression model of bridge service life vs. deck slab damage rate. The corrected deck slab damage rates were analyzed to determine correlation considering the number of snowy days, the amount of snowfalls, the number of freeze-thaw days, average winter temperature, altitude, the amount of deicing chemicals and equivalent traffic volume, and then both the number of freeze-thaw days and the amount of deicing chemicals were determined to be key factors causing deck slab deterioration. The complex deterioration considering both key factors was represented deck slab damage rate charts, and the average deck slab life was derived. The results of this study will be used as a guideline for highway bridge maintenance to identify the progress of deck slab deterioration for a given bridge and predict the time required deck slab rehabilitation.

Investigation of serviceability of bridge deck ends on concrete slab track-installed bridges considering track-bridge interaction (궤도-교량 상호작용을 고려한 콘크리트 슬래브궤도 부설 교량의 단부 사용성 검토)

  • Jang, Seung-Yup;Yang, Sin-Chu;Kim, Jong-Tae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1875-1881
    • /
    • 2007
  • Deformations of bridge deck ends on abutments or on transition between bridge decks can cause extreme deformations on track. Especially, since slab track is fixed onto the bridge deck slab on concrete slab track-installed bridges, deformations of bridge deck ends directly affect the track behavior, and thus these interactions can bring about the premature failure of rail fastenings or other deteriorations to lower the serviceability. In this study, a foreign standard to evaluate forces on track components caused by the track-bridge interactions and the serviceability of bridge deck ends is investigated, and for the real bridges, the serviceability of bridge deck ends according to several parameters of bridge and track is analyzed. It is found that arrangements and spring coefficients of bridge bearings, as well as distance between bridge bearing and last rail support, support spacings, rail support spring coefficient, are very important parameters.

  • PDF

3-D Behavior and Strut-and-Tie Model Analysis of Diaphragm in PSC Train Bridge (PSC철도교량 격벽부의 3차원 거동 및 스트럿-타이 모델 해석)

  • 송하원;변근주;김형운;김영훈
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.564-571
    • /
    • 1998
  • The function of diaphragms at abutments and piers of prestressed concrete (PSC) box girder train bridge is to transfer forces from the superstructure onto bearings or column and to stiffen the superstructure cross-section against in-plane deformation. Due to large stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than designs for other structual members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from behavior of the deck slab obtained from two dimensional analysis of the bridge, which is basis far the design of deck slab. In this paper, three dimensional behavior of deck slab near diaphragm of PSC box girder train bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling. Then, strut-and-tie model is applied to design the diaphragm of PSC box girder train bridge. The modeling techniques in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

Structural Behavior of a RC Bridge Slab Retrofitted with Carbon Fiber Sheet under Large Repeated Load

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • An experimental investigation on the flexural fatigue behavior of a RC bridge slab retrofitted with Carbon Fiber Sheet (CFS) is presented. The test slab was almost identical to the slab of a highway viaduct in terms of the amount of reinforcement, quality of concrete and thickness of the slab, which was 18cm. Repeated load corresponding to 3.0, 4.5 or 6.0 times of the design load was applied to the test slab. Normal type and high-elastic modulus type of CFS were used for strengthening. The test slabs were loaded in dry or wet condition. Two different types of an-choring system were adapted. Some of the test slabs were damaged by the repeated load and retrofitted by CFS, then loaded again to see the improvement of the fatigue life. Infrared Thermography was also performed to investigate the debonding condition of CFS. From the test results, Carbon Fiber Sheet can be applied to the RC bridge slabs as a feasible retrofitting material.

  • PDF

Comparative Analysis of Track-Bridge Interaction of Sliding Slab Track and Rail Expansion Joint for Long-Span Railway Bridge (장경간 철도 교량에 적용된 슬라이딩 궤도와 레일신축이음장치의 궤도-교량 상호작용 비교)

  • Lee, Kyoung Chan;Jang, Seung Yup;Lee, Jungwhee;Choi, Hyun Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2016
  • Sliding slab track system, which consists of low friction sliding layer between track slab and bridge deck, is recently devised to reduce track-bridge interaction effect of continuously welded rail(CWR) without applying special devices such as rail expansion joint(REJ). In this study, a series of track-bridge interaction analyses of a long-span bridge with sliding slab track and REJ are performed respectively and the results are compared. The bridge model includes PSC box girder bridge with 9 continuous spans, and steel-concrete composite girder bridge with 2 continuous spans. The total length of the bridge model is 1,205m, and the maximum spacing between the two fixed supports is 825m. Analyses results showed that the sliding slab track system is highly effective on interaction reduction since lower rail additional axial stress is resulted than REJ application. Additionally, horizontal reaction forces in fixed supports were also reduced compared to the results of REJ application. However, higher slab axial forces were developed in the sliding slab track due to the temperature load. Therefore, track slab section of the sliding slab track system should be carefully designed against slab axial forces.

Numerical study of stress states near construction joint in two-plate-girder bridge with cast-in-place PC slab

  • Yamaguchi, Eiki;Fukushi, Fumio;Hirayama, Naoki;Kubo, Takemi;Kubo, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.173-184
    • /
    • 2005
  • For reducing construction cost, two-plate-girder bridges are getting popular in Japan. This type of bridge employs a PC slab, which is often cast-in-place. In such a case, concrete is not usually cast over the whole slab at one time: some portions are constructed earlier than the rest. Therefore, a construction joint is inevitably created. Due to the drying shrinkage of concrete, tension stress may occur in concrete slab. High tensile stress can be expected near the construction joint where concretes with different ages meet. Moreover, prestressing is not applied over the whole length of slab at one time. This may also serve as a source of tensile stress in the slab. Thus there is a chance that cast-in-place PC slab, especially near the construction joint, may be subjected to tensile cracking. In the present study, stress states near the construction joint in the cast-in-place PC slab of a two-plate-girder bridge are investigated numerically. The finite element method is employed and the three-dimensional analysis is conducted to see the influence of dry shrinkage and prestressing. The stress states in the PC slab thus obtained are discussed. The simplified model of a plate girder for this class of analysis is also proposed.