• Title/Summary/Keyword: Slag powder

Search Result 361, Processing Time 0.04 seconds

An Experimental Study on the Setting Time and Compressive strength of Mortar using Ferronickel Slag Powder (페로니켈슬래그 미분말을 사용한 모르타르의 응결시간 및 압축강도특성에 관한 실험적 연구)

  • Kim, Young-Uk;Kim, Do-Bin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.551-558
    • /
    • 2018
  • This study evaluate the fluidity and hardening properties of mortar by replacement ratio of ferronickel slag powder to estimate the applicability of ferronickel slag powder for cement replacement materials. Ferronickel slag powder was replaced by 0, 5, 10, 15 and 20% of the cement weight. In addition, blast furnace slag powder and fly ash were also used for comparing with the mixtures using ferronickel slag powder. As the test results, the micro-hydration heat of the mixture containing the ferronickel slag powder was lower than that of the mixtures containing the same amount of blast furnace slag powder and fly ash. The flow of the sample with ferronickel slag powder was relatively higher than the other mixtures. In all ages, the compressive strength of the mixture with ferronickel slag powder and fly ash was similar to that of the mix containing only fly ash. In case of drying shrinkage, the mixture containing ferronickel slag powder exhibited lower drying shrinkage than the mixture using blast furnace slag powder, and similar to the mixture containing fly ash.

Durability in Concrete Containing Limestone Powder and Slag Powder (석회석 미분말과 슬래그 미분말을 혼합한 콘크리트의 내구성)

  • 구봉근;이재범;이현석;박주원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.82-85
    • /
    • 2003
  • This study is to investigate durability in concrete containing slag powder and limestone power. The variables are the substitution ratio of slag powder and limestone powder. In order to study the effect of slag powder and limestone powder, all mixtures were prepared at a fixed water/cement ratio, slump, and entrained air quantity. When concrete containing slag powder is mixing rate 40%, durability appeared the highest in general. When concrete containing limestone powder is mixing rate 10% in all experiments, the most suitable result appeared.

  • PDF

A Fluidity and Compressive Strength Properties of Blast Furnace Slag Based Non-Cement Paste Containing Ferronickel Slag Powder (페로니켈슬래그 미분말 혼입에 따른 고로슬래그 기반 무시멘트 페이스트의 유동성 및 압축강도 특성)

  • Kim, Young-Uk;Lee, Kyung-Su;Oh, Tae-Gue;Jeong, Su-Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.205-206
    • /
    • 2019
  • This study investigated the fluidity and compressive strength properties of blast furnace slag based non-cement paste containing ferronickel slag powder to evaluate the possibility of use in for cement replacement materials. As a result, the fluidity of non-cement paste showed a higher flow as the mixing ratio of ferronickel slag powder increased. The compressive strengths similar to those of the non-cement paste using only blast furnace slag powder were obtained when 5 and 10% of ferronickel slag powder were used.

  • PDF

A Study on the Determinational Method of Slag Admixture Replacement Ratio in Fresh Concrete with Blast-Furnace Slag Powder (고로슬래그미분말을 첨가한 콘크리트의 슬래그 정량분석에 대한 연구)

  • 박유신;김승진;홍종성;김대영;김장수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.951-956
    • /
    • 2000
  • Blast furnace slag powder(BFS) is potential hydration material, and that usage is increased the construction. But, the amount of BFS is important factor with the properties of concrete. The determinational method of slag powder experiments by salicylic acid-methyl alcohol solution method. From these results we can determine the amount of slag powder with blaine 4, 000 and 6, 000 in fresh concrete.

  • PDF

Effect of L.D Converter Slag Hardener on the Collapsibility of Sand Molds Using Sodium Silicate Binder (규산소오다계 자경성주형의 붕괴성에 미치는 L.D 전로 슬래그 경화제의 영향)

  • Choi, Jun-Oh;Park, Sung-Taik;Han, Yun-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.235-243
    • /
    • 2003
  • The collapsibility of sodium silicate-bonded sands mixed with the L.D converter slag powder to form a hardener were investigated. Five to six percent sodium silicate on the basis of silica sand and 30-40% L.D converter slag powder on the basis of sodium silicate, were mixed and the compressive strength, surface stability index(SSI), bench time, retained strength of the standard sand specimens were measured. The properties were similar to those of general inorganic bonded self-setting molds. The compressive strength and surface stability index were increased and the retained strength and bench time were decreased with increased amount of the L.D converter slag powder. The retained strength of sodium silicate-bonded self-setting molds with the L.D converter slag powder were decreased than $CO_2$ sand molds. The collapsibility of sodium silicate-bonded self-setting molds with the L.D converter slag powder were superior in comparison with $CO_2$ sand molds. The L.D converter slag powder could be used as hardener and collapse agent for the sodium silicate-bonded self-setting molds.

Characteristic on the Resistance of Chloride Infiltration in Concrete Containing Limestone Powder (석회석 미분말 혼합 콘크리트의 염소이온 침투 저항 특성)

  • 구봉근;라재웅;류택은;이재범;이현석;이기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.75-80
    • /
    • 2002
  • This study is to investigate the characteristic on the resistance of chloride infiltration concrete containing limestone powder The variables are the substitution ratio of slag powder and limestone powder. In order to study the effect slag powder and limestone powder, all mixtures were prepared at a fixed water/cement ratio, slump, and entrained air quantity. As results show that the strength and the resistance of chloride infiltration in concrete substitution 10%, 20% limestone powder, and 30%, 40% slag powder are positive.

  • PDF

Effect of Grading of Fine Powder obtained from Recycled Aggregates on Fundamental Properties of Slag-based Mortar (고로슬래그 미분말에 순환골재 미분말의 입도 변화에 따른 무시멘트 모르타르의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Heo, Young-Sun;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.37-38
    • /
    • 2013
  • The fine powder obtained from the manufacturing process of recycled coarse aggregate contains unhydareted cement particles on their surface. It is believed that the alkalinity of the powder (11.0-12.5) is enough to active the slag-based composites. In this paper, the obtained powder was sieved and divided into two sizes, i.e., 0.08 mm and 0.3 mm, and added to the slag-based mortar. Results showed that the fine powder had an effect on the slump and the compressive strength of slag-based composites. With the different pH values of the powder, it could be seen that the distance between the two level powders. And found the peak 28 days compressive strength as the replacement ratio of the recycled aggregate powder changed. The findings from this study provide an indication that with achieved compressive strength, the fine powder can be used in a light weight concrete.

  • PDF

Influence of Limestone Powder on the Hydration of slag cement (슬래그 시메\ulcorner의 수화반응에 미치는 석회석 분말의 영향)

  • 이민석;윤철현;최현국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.85-88
    • /
    • 1999
  • We tested the limestone powder as a filler powder for the effective use of slag cement. Hydration process were investigated by measuring the thermal differential analysis(DTA), compressive strength, XRD patterns, calorimeter of slag cement-limestone powder paste prepared by mixing limestone powder-slag cement. The results obtained in this study, there were no significant difference between the cases of adding up to 5% limestone powder, but the reaction time was accelerated. Also the compressive strength was increased for adding up to 5% limestone powder. The min hydrated paste products were Ca(OH)2 and calcium silicate hydrates. In the case of mixed limestone powder peak appear tricalcium carboaluminate hydrate in the sample of 7 days hydration.

  • PDF

Compressive Strength and Acid-Resistant of Polymer Concrete Using Redispersible Polymer and Blast Furance Slag Powder (재유화형 분말수지와 고로 슬래그 미분말을 혼입한 폴리머 콘크리트의 압축강도 및 내산성)

  • Kim, In-Su;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.19-27
    • /
    • 2008
  • This study was performed to evaluate the compressive strength and acid-resistant of polymer concrete using redispersible polymer powder(RPP) and blast furnace slag powder(BSP). Material used were ordinary portlant cement, recycled coarse aggregate, natural fine aggregate, redispersible polymer powder and blast furnace slag powder. The main experimental variables were the substitution ratio of redispersible polymer powder and blast furnace slag powder, when the substitution ratios of RPP were 0, 1, 2, 3, 4, 5 and 6%, and those of BSP were 10%. The compressive strength and acid-resistant of polymer concrete using RPP and BSP were compared with those of ordinary concrete(Basis). When the substitution ratio of RPP was 1%, at age of 28 days, the compressive strength were more higher than those of Basis by 24%, and it was decreased with increasing the RPP content, respectively. Also, the water absorption ratio was decreased with increasing the RPP content. But, the acid-resistant was improved with increasing the RPP content.

Initial Strength Characteristics of Cementitious Gypsum-Containing Coal Gasification Slag Powder Replacement Cement Mortar (석고 혼입 석탄가스화 슬래그 미분말 치환 시멘트 모르타르의 초기강도 특성)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.207-208
    • /
    • 2019
  • In this study, compressive strength was measured to evaluate the initial strength of cement mortar substituted with coal gasification slag containing desulfurized gypsum, and the reactivity of desulfurized gypsum was confirmed. In order to improve the reactivity, 2% gypsum mixed type and gypsum unfedged type specimens were fabricated and the influence of desulfurization gypsum on compressive strength of coal gasification slag and blast furnace slag fine powder replacement cement mortar was compared and confirmed. As a result of the experiment, it was confirmed that the initial compressive strength of the specimen containing the desulfurized gypsum was improved at the initial stage.

  • PDF