• Title/Summary/Keyword: Slot MMF harmonics

Search Result 4, Processing Time 0.021 seconds

Study of Winding Method to Reduce Stray Loss and Stator Core Vibration of Synchronous Machine

  • Hiramatsu, Daisuke;Sutrisna, Kadek Fendy;Ishizuka, Hiroaki;Okubo, Masashi;Tsujikawa, Kazuma;Ueda, Takashi;Hachiya, Hideyuki;Mori, Junji;Aso, Toshiyuki;Otaka, Toru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • The fractional slot windings are widely used in rotating machine in order to increase the flexibility of design and improve the voltage waveform. However, the MMF wave of fractional-slot windings are found to contain unique harmonic component, which are designated as even order space flux harmonics, fractional number flux harmonics, or both. They may cause stray loss and stator core vibration. This paper proposes new winding methods "novel interspersed windings" and "expanded group windings" to reduce these harmonics. The advantages of two proposed windings are verified by using numerical analysis and measurement test of winding model.

A Novel Wound Rotor Type for Brushless Doubly Fed Induction Generator

  • Chen, Xin;Wang, Xuefan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.595-602
    • /
    • 2015
  • The rotor configuration of the brushless doubly fed induction generator (BDFIG) plays an important role in its performance. In order to make the magnetomotive force (MMF) space vector in one set rotor windings to couple both magnetic fields with different pole-pair and have low resistance and inductance, this paper presents a novel wound rotor type for BDFIG with low space harmonic contents. In accordance with the principles of slot MMF harmonics and unequal element coils, this novel rotor winding is designed to be composed of three-layer unequal-pitch unequal-turn coils. The optimal design process and rules are given in detail with an example. The performance of a 700kW 2/4 pole-pair prototype with the proposed wound rotor is analyzed by the finite element simulation and experimental test, which are also carried out to verify the effectiveness of the proposed wound rotor configuration.

A Study of Space Harmonics of Induction Motor Using Artificial Neural Network (인공신경회로망을 이용한 유도전동기 공간고조파 저감에 관한 연구)

  • Bae, Dong-J.;Koh, Chang-S.;Jung, Hyun-K.;Hahn, Song-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.101-103
    • /
    • 1995
  • This paper describes new tecknique to obtain optimum value in calculating space harmonics in the motor design. First, develops general procedure in calculating slot harmonics, MMF harmonics, and systhesis of them. And then, trains Artificial Neural Network by classical method. Once trained ANN, it also computing different input data more quickly.

  • PDF

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.