• Title/Summary/Keyword: Small hydro

Search Result 241, Processing Time 0.032 seconds

An Application Case Study of Improving Performance of Small Hydro-power (소수력 성능향상 사례연구)

  • Kim, Sang-Gyun;Park, Ji-Kun;Lee, Yeon-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.165.1-165.1
    • /
    • 2011
  • In this paper, it is intended to study about deferences of design and operation properties between large and small hydro-power house's turbine which type is reaction. In generally, turbine of large hydro-power has a more safe and effective energy output mechanisms than small hydro-power's because the turbine of small hydro-power is more sensitive to hydraulic losses. But, it is more effective for the all energy market to improve the capability and efficiency of small hydro-power in the present status of increasing construction of small hydro-power than large hydro-power. Therefore, we intend to investigate and introduce the way to enhance the efficiencies of reaction turbine adopted to small hydro-power.

  • PDF

Feasibility Study on the Construction of Small Hydro-Power Plants in Gumi Sewage Treatment Plant Discharge Point (구미하수처리장 방류구에서의 소수력발전 설치 및 운영에 관한 연구)

  • Nah, Dong-Hun;Lee, Seung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.173-181
    • /
    • 2010
  • This study was conducted to investigate the possible installation of small hydro-power plant at the discharge point of Gumi sewage treatment plant (STP) using treated wastewater. Sufficient amount of water to transfer to electric power and the selection of proper location are two essential elements for the construction of small hydro-power facility. Preliminary analysis based on site visit and existing data in Gumi STP were made. Capacity of the small hydro-power plants and exact location were determined by geomorphological condition and flow duration characteristics. Flow duration characteristics and its duration curve were identified using monthly rainfall data in Gumi STP. Relevant facts of small hydro-power system in other STP were referred to adopt to Gumi STP situation. Flowrate of treated effluents and effective head between flow chamber and the location of hydraulic turbine in Gumi STP are found to be $3.70m^3$/sec and 3.5m respectively. Electric generation rate based on this feasibility study was estimated to be 86.3kW/h. Yearly electric generation rate was expected to be 932.4MMh. Proposed small hydro-power plant construction in Gumi STP is to be reasonable.

Construction of Marine Small Hydro Power Plant using Discharge Water of Fish Farm (양어장 방류수를 이용한 해양소수력발전소 구축에 관한 연구)

  • Hwang, Yeong-Cheol;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.11-17
    • /
    • 2013
  • This study is aimed to construct a marine small hydro power plant using discharge water of fish farm in Jeju Haengwon-ri. The difference of design methods between marine small hydro power plant and land small hydro power plant is to consider the tides. Moreover, ground condition should be examined because gushout sea water comes out from the ground at high tide in Jeju as the ground of Jeju beach consists of basalt stone. From the field test of the turbine generator after construction of the power plant, output power and efficiency of the turbine generator shows good conformance to the required conditions.

Analysis of Insulation Characteristic for Small Hydro Generator (소수력발전기 절연특성분석)

  • Oh, Bong-Keun;Chang, Jeong-Ho;Lee, Kwang-Ho;Kang, Dong-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.142-145
    • /
    • 2008
  • Electrical insulation of small hydro generator stator winding is one of the most important parts in generator facilities. Some stator winding insulation problems can be identified through analysis of insulation diagnostic test. So, Diagnosis of stator winding insulation is an important measure of ensuring the safe operation and extending the remaining life of small hydro generator. This paper presents case studies of insulation failure in generator stator windings and the results of insulation diagnostic test for small hydro generator stator windings. Especially, Conducting the insulation diagnostic test before the generator installed in site is very important process to keep the good insulation condition in service.

  • PDF

A Study on the Modeling Analysis for Kaplan Micro-turbines (케프란 마이크로터빈의 모델링 해석에 관한 연구)

  • Kim, O.S.;Kim, I.S.;Kim, H.H.;Shim, J.Y.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.105-110
    • /
    • 2006
  • Among many other alternative energy resources, small scale hydro power has been brought into attention as a reliable source of energy today, which had been relatively neglected since 1960s. Especially, Kaplan micro-turbine can be applied to various kind of small hydro power plants, such as reservoirs for agriculture purpose, sewage treatment plants and water purification plants. However present low head of Kaplan micro-turbines and small scale hydro turbines, have limitations in the minimum required head and flow rate for efficient operation. This research is to develop modeling analysis for the Kaplan micro-turbine, which can improve economical features of small hydro power plants. The contents and scope of this research are the efficiency improvement of Kaplan micro-turbine.

  • PDF

A Study on Output Increase of Small Hypro Power using Nature Energy (자연에너지를 이용한 소수력 출력증대 방안 연구)

  • Chae, Ji-Seog;Yoon, Lee-Soo;Kim, Tae-Ho;Kim, Young-Il;Ma, Bem-Gu;Choi, Jang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1129-1130
    • /
    • 2011
  • The output of small hydro power plant was generated less than rated output under high temperature. We Installed the artificial ventilation that blow cold wind from water supply pipe tunnel to small hydro power plant. The temperature of small hydro power has been decreased. The output of small hydro power plant has been increased from 405kW to 445kW.

  • PDF

Performance Analysis of 10kW Class Propeller Hydro Turbine by the Change of Flow Rates and the Number of Runner Vane Using CFD (CFD를 이용한 10kW급 모델 실험용 프로펠러 수차의 유량 및 러너 베인 깃 수 변화에 따른 성능해석)

  • Park, Ji-Hoon;Kim, You-Taek;Cho, Yong;Kim, Byeong-Kon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Small hydro power, among other renewable energy resources, has been evaluated to have enough development value because it is a clean, renewable and abundant energy resource. In addition, small hydro power has the advantage of low cost development by using existing facilities like sewage treatment plants, water works and similar resources. But in the case of small hydro power systems, there are problems with degraded operation efficiency of turbine due to changes in flow rates. In order to overcome this, variable speed control can be achieved by using the power rectifier and permanent magnetic synchronous generator(PMSG) as a possible method to respond to the changes in flow rates. In this study, a commercial ANSYS CFD code was used to analyze the performance of 10kW class propeller hydro turbine and to also investigate flow characteristics at variable flow rates and runner vane.

Performance Analysis of a Cross Flow Hydro Turbine by Runner Blade Number (소수력발전용 횡류수차의 러너 블레이드 깃수에 따른 성능해석)

  • Choi, Young-Do;Jin, Chang-Fu;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.698-706
    • /
    • 2008
  • Performance improvement of Small hydro turbine is a very important subject to solve in the stage of introduction and development of the turbine. Cross-flow hydro turbine should be also studied more in detail for the turbine performance in order to extend the sites of application. In order to improve the turbine performance, the effect of the turbine shape on the turbine performance should be examined. Therefore, the effect of runner blade number on the turbine performance is investigated by use of a commercial CFD code. The results show that runner blade number gives remarkable effect on the efficiency and output power of the turbine. Pressure on the surface of the runner blade changes considerably by the blade number at Stage 1, but relatively small change of velocity distribution occurs in the flow passage.

CFD Performance analysis of Micro Tubular-type hydro turbine by blade shape (블레이드 형상 변화에 따른 마이크로 튜블러 수차의 CFD 성능해석)

  • Park, Ji-Hoon;Hwang, Young-Cheol;Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.1-206.1
    • /
    • 2011
  • Recently, various developments in the area of small hydropower have being made and small hydro turbines are suitable for domestic use because it is a clean and renewable energy source. A small hydropower generator produces power by using the different water pressure levels in pipe lines and energy which was initially wasted by use of a reducing valve at the end of the pipeline is instead collected by a tubular-type hydro turbine in the generator. In this study, in order to acquire the performance of tubular-type hydro turbine applied, the output power, head, efficiency characteristics due to the different guide vane and runner vane angle are examined in detail. Moreover, influences of pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

AN ANALYSIS OF PERFORMANCE CHARACTERISTICS FOR SMALL HYDRO POWER PLANTS

  • Park, Wan-Soon;Lee, Chul-Hyung;Jeong, Sang-Man
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • A performance prediction model for Small Hydro Power(SHP) sites has been studied and developed. Twelve SHP sites were selected and the performance characteristics were analyzed by using the developed model. Also, primary design specifications such as design flowrate, plant capacity, operational rate were suggested and feasibility for small hydro power sites were estimated. It was found that the design flowrate is most important parameter to exploit SHP plant and the methodology developed in this study can be a useful tool to analyze the performance of SHP sites.

  • PDF