• Title/Summary/Keyword: Smart User Interface

Search Result 324, Processing Time 0.023 seconds

A Technique of Applying Embedded Sensors to Intuitive Adjustment of Image Filtering Effect in Smart Phone (스마트폰에서 이미지 필터링 효과의 직관적 조정을 위한 내장센서의 적용 기법)

  • Kim, Jiyeon;Kwon, Sukmin;Jung, Jongjin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.960-967
    • /
    • 2015
  • In this paper, we propose a user interface technique based on embedded sensors applying to apps in smart phone. Especially, we implement avata generation application using image filtering technique for photo image in smart phone. In the application, The embedded sensors are used as intuitive user interface to adjust the image filtering effect for making user satisfied effect in real time after the system produced the image filtering effect for avatar. This technique provides not a simple typed method of parameter values adjustment but a new intuitively emotional adjustment method in image filtering applications. The proposed technique can use sound values from embedded mike sensor for adjusting key values of sketch filter effect if the smart phone user produces sound. Similiarly the proposed technique can use coordinate values from embedded acceleration sensor for adjusting masking values of oil painting filter effect and use brightness values from embedded light sensor for adjusting masking values of sharp filter effect. Finally, we implement image filtering application and evaluate efficiency and effectiveness for the proposed technique.

Smart Emotional lighting control method using a wheel interface of the smart watch (스마트워치의 휠 인터페이스를 이용한 스마트 감성 조명 제어)

  • Kim, Bo-Ram;Kim, Dong-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1503-1510
    • /
    • 2016
  • In this study, we implemented the emotional light controlling system by using the wheel interface built in the smart-watch devices. Most previous light controlling systems have been adopted the direct switches or smart-phone applications for presenting individual emotion in lighting systems. However, in order to control color properties, these studies have some complicated user-interfaces in systems and limitation to present various color spectrums. Therefore, we need to user-friendly interfaces and functions for controlling properties of the lightning systems such as color, tone, color temperature, brightness, and saturation in detail with the wheel interface built in the smart-watch devices. The system proposed in the study is given to choose the user's selecting the emotional status information for providing the emotional lights. The selectable emotional status such as "stable", "surprise", "tired", "angry", etc. can be among 11 kinds of emotional states. In addition, the designed system processed the user's information such as user's emotional status information, local time, location information.

The Study of Usability Evaluation in the GUI of Mobile Computing - Based on Benchmark Testing in the interface design of WIPI (Mobile Computing의 GUI 개발에 있어 사용성 평가 연구 - WIPI 인터페이스 디자인을 위한 Benchmark Testing을 중심으로 -)

  • 정봉금;송연승
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.49-62
    • /
    • 2004
  • Due to the recent surge of wireless Internet and concurrent development of the end user terminal devices having standardized graphical user interface(GUI) and unified operation mechanism for better interactivity in information representation and ease of use, various efforts on the improvement of GUI is widely recognized as one of the key factors that will usher in the next stages of the wireless Internet for the users. Especially, improved usability along with unique visual effect are considered to be the key elements for GUI considering the rapid improvement of the resolution and color on the end user handset devices; thus, the study and research on the subject of GUI is expected to increase along with the wireless Internet using smart phones. User interface of the wires Internet end user handsets will have a definite and significant effect on the user interaction as well as productivity. Domestically, wireless Internet service providers and GUI design companies are making various efforts in producing a common GUI models for standardized operation scheme and improved graphical display capabilities of the hand phones, PDAs and smart phones. In the study, Nokia 3650 model and Microsoft Orange SPV model were chosen as test devices for usability comparison and data collection to collect directional benchmark data in developing next generation smart phone user interface integrating PDAs and phones. The mail purpose of this study is to achieve the most efficient user accessibility to WAP menu through intensive focus on developing WIPI WAP menu having most effective usability for the users in their twenties and thirties. The result of this study can also be used as the base research materials for WAP service development, VM browser development and PDA browser development. The result of this study along with the evaluation model is expected to provide effective analysis materials on the subject of user interface to the developers of the wireless Internet user devices, GUI designers and service planners while short listing key factors to consider in developing smart phones therefore serving as the GUI guideline of WIPI phones.

  • PDF

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

Improved control structure to enhance user experience of smart phone (스마트 폰의 사용자 경험 증진을 위한 컨트롤 구조개선)

  • Lee, Youngju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • As the usage of smart phones continues to increase, the control UI, which users have to continue to use, sometimes finds a heavy burden on users. Therefore, in this study, we have studied the control user interface structure along with the theoretical background of the control user interface, and we have studied the role and usage of the control component based on it. Typical commonly used controls are button controls for transmission, selection controls for various selections, link controls for navigation, text controls for inputting characters, indicator controls for feedback on progress, A message control that displays information about warnings and errors, and a window control such as a dialog box. The structure of the control should be designed according to the use of the separated control to help the user efficiently use the control user interface. Based on the analysis of the theoretical usage of representative components belonging to the separated controls, we presented a new and correct way to use the control to improve the user experience. The use of improved control components will help to design the control structure efficiently and to improve the user experience.

Development of Motion Recognition Platform Using Smart-Phone Tracking and Color Communication (스마트 폰 추적 및 색상 통신을 이용한 동작인식 플랫폼 개발)

  • Oh, Byung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.143-150
    • /
    • 2017
  • In this paper, we propose a novel motion recognition platform using smart-phone tracking and color communication. The interface requires only a camera and a personal smart-phone to provide a motion control interface rather than expensive equipment. The platform recognizes the user's gestures by the tracking 3D distance and the rotation angle of the smart-phone, which acts essentially as a motion controller in the user's hand. Also, a color coded communication method using RGB color combinations is included within the interface. Users can conveniently send or receive any text data through this function, and the data can be transferred continuously even while the user is performing gestures. We present the result that implementation of viable contents based on the proposed motion recognition platform.

Development and Research of SMT(Smart Monitor Target) Game Interface for Airsoft Gun Users (AirSoft Gun 사용자를 위한 SMT(Smart Monitor Target)게임 인터페이스 개발 연구)

  • Chung, Ju Youn;Kang, Yun Geuk
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • The purpose of this study was to develop a personalized SMT (smart monitor target) game interface for game users who enjoy airsoft sports as individual purchases of SMT have increased since the advent of the untouched era. For this study, the UX (user experience) of the game interface was designed based on previous research. In particular, the personalized game service was reinforced by adding the CP (command post) of the SMT system that performs the home function of the console game, which was intended to help the user maintain immersed in the game in the personalized space of the SMT. Major design elements for the SMT game interface included layout, color, graphics, buttons, and text, and the interface design was proceeded based on them. After composing a grid with a layout in which the tab function was applied to the interface with a vertical three-segment structure and the outer margin value secured, the military camouflage pattern and texture were applied to the colored tone to perform graphics work. Targets and thumbnails were produced as illustrations using experts to ensure the consistency of the interface, and then function buttons and texts on each page were used concisely for intuitive information delivery. The design sources organized in this way were developed using the Unity engine. In the future, we hope that game user-centered personalized interfaces will continue to develop and provide differentiated services unique to SMT systems in the airsoft gun market.

Developing the Core Modules of for Viz-Platform for Supporting Public Service in the City (도시의 공공서비스 제공을 위한 시각화 플랫폼의 핵심모듈 개발)

  • Kim, Mi-Yun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1131-1139
    • /
    • 2015
  • The purpose of this research is creating the visualization platform of the user interface to make able to be provide the demanded service while users communication with surrounding space in a smart city environment. This comes from the latest enhanced interface technology and social media, and it uses the shares information to support the proper interface environment according to a life style and spatial properties. "EzCity" which is the user interface platform suggested in this research, can control the enormous amount of public data for the smart city. The core module of user platform is made up with Public data module, Interface module, Visualization module and Service module. The role of this platform is to be provide "Geo-Intelligent Interface Service" for space users to access the data in easier and more practical interface environment. This reinforces the visualization process for data collecting, systematization, visualization and providing service. Also this will be expected to be the base to solve the problem which complexity and rapidly increasing amount of data.

Identification of user's Motion Patterns using Motion Capture System

  • Jung, Kwang Tae;Lee, Jaein
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.453-463
    • /
    • 2014
  • Objective:The purpose of this study is to identify motion patterns for cellular phone and propose a method to identify motion patterns using a motion capture system. Background: In a smart device, the introduction of tangible interaction that can provide new experience to user plays an important role for improving user's emotional satisfaction. Firstly, user's motion patterns have to be identified to provide an interaction type using user's gesture or motion. Method: In this study, a method to identify motion patterns using a motion capture system and user's motion patterns for using cellular phone was studied. Twenty-two subjects participated in this study. User's motion patterns were identified through motion analysis. Results: Typical motion patterns for shaking, shaking left and right, shaking up and down, and turning for using cellular phone were identified. Velocity and acceleration for each typical motion pattern were identified, too. Conclusion: A motion capture system could be effectively used to identify user's motion patterns for using cellular phone. Application: Typical motion patterns can be used to develop a tangible user interface for handheld device such as smart phone and a method to identify motion patterns using motion analysis can be applied in motion patterns identification of smart device.

SmartPuck System : Tangible Interface for Physical Manipulation of Digital Information (스마트 퍽 시스템 : 디지털 정보의 물리적인 조작을 제공하는 실감 인터페이스 기술)

  • Kim, Lae-Hyun;Cho, Hyun-Chul;Park, Se-Hyung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.226-230
    • /
    • 2007
  • In the conventional desktop PC environment, keyboard and mouse are used to process the user input and monitor displays the visual information as an output device. In order to manipulate the digital information, we move the virtual cursor to select the desired graphical icon on the monitor The cursor represents the relative motion of the physical mouse on the desk. This desktop metaphor does not provide intuitive interface through human sensation. In this paper, we introduce a novel tangible interface which allows the user to interact with computers using a physical tool called "Smartpuck". SmartPuck system bridges the gap between analog perception and response in human being and digital information on the computer. The system consists of table display based on a PDP, SmartPuck equipped with rotational part and button for the user's intuitive and tactile input, and a sensing system to track the position of SmartPuck. Finally, we will show examples working with the system.