• Title/Summary/Keyword: Smart center node

Search Result 27, Processing Time 0.023 seconds

Improved Ad Hoc On-demand Distance Vector Routing(AODV) Protocol Based on Blockchain Node Detection in Ad Hoc Networks

  • Yan, Shuailing;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.46-55
    • /
    • 2020
  • Ad Hoc network is a special wireless network, mainly because the nodes are no control center, the topology is flexible, and the networking could be established quickly, which results the transmission stability is lower than other types of networks. In order to guarantee the transmission of data packets in the network effectively, an improved Queue Ad Hoc On-demand Distance Vector Routing protocol (Q-AODV) for node detection by using blockchain technology is proposed. In the route search process. Firstly, according to the node's daily communication record the cluster is formed by the source node using the smart contract and gradually extends to the path detection. Then the best optional path nodes are chained in the form of Merkle tree. Finally, the best path is chosen on the blockchain. Simulation experiments show that the stability of Q-AODV protocol is higher than the AODV protocol or the Dynamic Source Routing (DSR) protocol.

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

A study on Development of Remote Vehicle Fault Diagnostic System (원격 자동차 고장 진단 시스템 개발에 대한 연구)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • Data transmission via the car driver's tethered smart phone may have a volume-dependent billing in case car driver' phone transmits data in real-time to the remote data center. The on-board diagnosis data generated are temporary stored locally to mobile remote diagnosis application on the car driver's phone, and then transmit to the data center later when car driver connects to the Internet. To increase the easiest of using the remote vehicle application without blocking other tasks to be executing on the cloud, node.js stands as a suitable candidate for handling tasks of data storage on the cloud via mobile network. We demonstrate the effectiveness of the proposed architecture by simulating a preliminary case study of an android application responsible of real time analysis by using a vehicle-to- smart phones applications interface approach that considers the smart phones to act as a remote user which passes driver inputs and delivers output from external applications. In this paper, we propose a study on development of Remote Vehicle fault diagnostic system features web server architecture based event loop approach using node.js platform, and wireless communication to handle vehicle diagnostics data to a data center.

  • PDF

Node-Level Trust Evaluation Model Based on Blockchain in Ad Hoc Network

  • Yan, Shuai-ling;Chung, Yeongjee
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.169-178
    • /
    • 2019
  • Due to the characteristics of an ad hoc network without a control center, self-organization, and flexible topology, the trust evaluation of the nodes in the network is extremely difficult. Based on the analysis of ad hoc networks and the blockchain technology, a blockchain-based node-level trust evaluation model is proposed. The concepts of the node trust degree of the HASH list on the blockchain and the perfect reward and punishment mechanism are adopted to construct the node trust evaluation model of the ad hoc network. According to the needs of different applications the network security level can be dynamically adjusted through changes in the trust threshold. The simulation experiments demonstrate that ad-hoc on-demand distance vector(AODV) Routing protocol based on this model of multicast-AODV(MAODV) routing protocol shows a significant improvement in security compared with the traditional AODV and on-demand multipath distance vector(AOMDV) routing protocols.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.

Remote Monitoring with Hierarchical Network Architectures for Large-Scale Wind Power Farms

  • Ahmed, Mohamed A.;Song, Minho;Pan, Jae-Kyung;Kim, Young-Chon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1319-1327
    • /
    • 2015
  • As wind power farm (WPF) installations continue to grow, monitoring and controlling large-scale WPFs presents new challenges. In this paper, a hierarchical network architecture is proposed in order to provide remote monitoring and control of large-scale WPFs. The network architecture consists of three levels, including the WPF comprised of wind turbines and meteorological towers, local control center (LCC) responsible for remote monitoring and control of wind turbines, and a central control center (CCC) that offers data collection and aggregation of many WPFs. Different scenarios are considered in order to evaluate the performance of the WPF communications network with its hierarchical architecture. The communications network within the WPF is regarded as the local area network (LAN) while the communication among the LCCs and the CCC happens through a wide area network (WAN). We develop a communications network model based on an OPNET modeler, and the network performance is evaluated with respect to the link bandwidth and the end-to-end delay measured for various applications. As a result, this work contributes to the design of communications networks for large-scale WPFs.

Implementation of an Intelligent Grid Computing Architecture for Transient Stability Constrained TTC Evaluation

  • Shi, Libao;Shen, Li;Ni, Yixin;Bazargan, Masound
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • An intelligent grid computing architecture is proposed and developed for transient stability constrained total transfer capability evaluation of future smart grid. In the proposed intelligent grid computing architecture, a model of generalized compute nodes with 'able person should do more work' feature is presented and implemented to make full use of each node. A timeout handling strategy called conditional resource preemption is designed to improve the whole system computing performance further. The architecture can intelligently and effectively integrate heterogeneous distributed computing resources around Intranet/Internet and implement the dynamic load balancing. Furthermore, the robustness of the architecture is analyzed and developed as well. The case studies have been carried out on the IEEE New England 39-bus system and a real-sized Chinese power system, and results demonstrate the practicability and effectiveness of the intelligent grid computing architecture.

A Study on the Application of Voronoi Diagram for Internet of Thing (보로노이 다이어그램의 사물인터넷 적용에 관한 연구)

  • Kim, Inbum
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.283-284
    • /
    • 2016
  • 사물인터넷이란 인간의 일상생활에 사용 중인 가전제품, 의료기기, 기타 센서 부착 기기들이 인터넷에 연결되어 스스로 통신하고 제어하는 환경이다. 본 논문에서는 사물인터넷을 구성하는 각 사물들 간의 효율적인 통신을 위해 센터노드를 설정하고 각 사물들이 센터 노드를 중계기로 활용하여 다른 사물들과 효과적인 통신할 때 보로노이 다이어그램을 적용하는 방법을 제안한다.

  • PDF

Hybrid Communication Network Architectures for Monitoring Large-Scale Wind Turbine

  • Ahmed, Mohamed A.;Kim, Young-Chon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1626-1636
    • /
    • 2013
  • Nowadays, a rapid development in wind power technologies is occurring compared with other renewable energies. This advance in technology has facilitated a new generation of wind turbines with larger capacity and higher efficiency. As the height of the turbines and the distance between turbines increases, the monitoring and control of this new generation wind turbines presents new challenges. This paper presents the architectural design, simulation, and evaluation of hybrid communication networks for a large-scale wind turbine (WT). The communication network of WT is designed based on logical node (LN) concepts of the IEC 61400-25 standard. The proposed hybrid network architectures are modeled and evaluated by OPNET. We also investigate network performance using three different technologies: Ethernet-based, WiFi-based, and ZigBee-based. Our network model is validated by analyzing the simulation results. This work contributes to the design of a reliable communication network for monitoring and controlling a wind power farms (WPF).