• Title/Summary/Keyword: Smooth motion

Search Result 190, Processing Time 0.029 seconds

Operation Analysis of ARM for Design Smooth ARM Motion Algorithm (Smooth ARM Motion 알고리즘 설계를 위한 소형 로봇 ARM의 동작 특성 분석)

  • WENHAI, JIN;Chang, Yunseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.69-72
    • /
    • 2015
  • 로봇의 ARM에 대한 연구는 로봇공학의 매우 중요한 부분이고 이에 대하여 오랜 기간 동안 많은 연구 개발들이 꾸준히 진행되고 있으며, 인간과 로봇의 동작에 있어서 움직임의 차이를 줄이기 위하여 다양한 연구 방법론들이 제시되고 있다. 특히 인간의 동작에 근접하는 로봇의 동작을 구현하기 위해서 로봇의 중요한 구성 요소 중의 하나인 ARM을 더욱더 중점으로 연구를 진행하고 있고, ARM을 로봇뿐만 아니라 다양한 분야에서 활용하기 위해 많은 노력을 하고 있다. 본 논문에서는 인간의 팔 동작에 근접하는 로봇 ARM 동작을 구현하는 Smooth ARM Motion 알고리즘을 설계하기 위하여 로봇의 기존 ARM 동작을 파악하고 그 특성을 분석하였다. Smooth ARM Motion은 중대형 로봇 설계에서 이미 적용되어 있지만 소형의 모터 서보를 사용하는 로봇에서는 적용되기 어려운 문제점을 가지고 있다 따라서 본 논문에서는 소형 모터 서보 시스템에서 Smooth ARM Motion을 구현하기 위하여 효과적으로 ARM을 제어하는 방법론을 도출하는 데에 필요한 제어 변수들을 제시하고, Arduino 환경에서 Smooth ARM Motion설계하기 위한 ARM에 대한 제어 변수들 간의 상관관계들을 실험을 통하여 분석하였다.

A Study on Ultra Precision Rotational Device Using Smooth Impact Drive Mechanism (스무즈 임팩트 구동 메커니즘을 이용한 초정밀 회전장치에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.140-147
    • /
    • 2008
  • This paper represents an ultra precision rotational device where the smooth impact drive mechanism (SIDM) is utilized as driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction part that is attached to the piezoelectric element. This device was designed to drive the rotational disk using slip-slip motion mechanism instead of stick-slip motion mechanism occurred in conventional impact drive mechanism. Experimental results show that the angular velocity is increased in proportion to the magnitude and frequency of supplied voltage to piezoelectric element and decreased as the preload is increased. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V.

A Study on the Ultra Precision Rotational Device using Smooth Impact Drive Mechanism (SIDM(Smooth Impact Drive Mechanism)을 이용한 초정밀 회전기구에 대한 연구)

  • Lee S.;Jeon J.U.;Park K.Y.;Boo K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.485-486
    • /
    • 2006
  • This paper represents a ultra precision rotational device where the smooth impact drive mechanism(SIDM) is utilized as a driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction bars which are attached to the piezoelectric elements. This device was designed to drive a rotational disk using slip-slip motion mechanism based on stick-slip motion mechanism. Experimental results show that the angular velocity was increased in proportion to the magnitude of supplied voltage to piezoelectric element. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V. The amount of step movement has been revealed to be $3.44{\times}10^{-4}$ radian.

  • PDF

Tele-operation of A Low-cost Un-autonomous Mobile Robot Using A New Fuzzy Command Smoothing Concept (새로운 퍼지 명령 스무딩 개념을 이용한 저가형 비자율주행 이동로봇의 원격제어)

  • Yoo Bong-Soo;Joh Joongseon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.809-815
    • /
    • 2004
  • Researches on mobile robots have been mainly focused on the autonomous navigation and a lot of interesting results have been published so far. Most of applications are, however, fancy, unpractical, and very expensive to be used for 'UN-expensive' purpose. Well-known soccer robot may be an example of unpractical application. Un-autonomous mobile robot has, however, potential for a lot of practical applications. Especially, tele-operation of the un-autonomous mobile robot may the central issue of research. Major research topics for the tele-operated un-autonomous mobile robot include development of a force reflecting joystick for tele-operation and development of a sophisticated algorithm for smooth tele-operation. A new concept named fuzzy command smoothing algorithm is proposed in this paper in order to provide smooth motion to a tele-operated mobile robot. It gives smooth motion command to the mobile robot from possibly abrupt quick turn motion command of the joystick using fuzzy logic. Simulation results verify the usefulness of the proposed algorithm.

Gait Implementation of a Biped Robot with Smooth Walking Pattern (유연한 보행 형태를 갖는 이족보행로봇의 걸음새 구현)

  • No, Gyeong-Gon;Gong, Jeong-Sik;Kim, Jin-Geol;Kim, Gi-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents the new gait implementation of a biped robot with smooth walking using 3-dimensional continuous trunk motion and kick action of ankle joints. Trajectory generation ova trunk is performed not on a unit gait but on a whole walking interval. In applying kick action such as heel-touch or toe-off, varying coordinate system was employed for the simplification of the kinematic analysis. Desired ZMP (zero moment point) is also changed to implement the efficient kick action. As a result, balancing motion of the proposed gait was much more decreased than that of conventional one. Moreover, robot\\`s walking behavior is very smooth, natural and similar to the pace of a human. The walking experiment system is composed of eight AC servo motors and a DSP controller. The walking simulation and the experimental results are shown using the proposed new walking algorithm.

Motion Areas based Painterly Animation using Various Edges (다양한 에지를 이용한 모션영역 기반 회화적 애니메이션)

  • Park, Young-Sup;Yoon, Kyung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, we present a novel method for creating a hand-painted painterly animation, starting from a video input. One of the most important aspects in painterly animation is to maintain the temporal coherence of brush strokes between frames, which plays a vital role to warrant a smooth transition between frames. Our unique utilization of motion areas enables users to produce a smooth movement of brush strokes. The motion areas are the parts where objects move between frames and they are categorized in two main types. A strong motion area is the part where the movement of real edges and hidden edges is determined by the motion vector between frames. The real edge is the outline of an object and the hidden edge is the boundary to represent the direction of a grain of intensity in the areas with gradations. A weak motion area is the remainder after subtracting the strong motion area from the entire motion area. Temporally coherent painterly animation is achieved by re-painting the brush strokes on the canvas using two motion areas, resulting in a natural and hand-painted appearance.

  • PDF

Motion Analysis of Power Tiller for Stability Improvement -Development of A Mathematical Model of Motion for Power tiller-Trailer System (동력경운기(動力耕耘機)의 안정성(安定性) 향상(向上)을 위한 주행(走行) 및 선회(旋回)에 관(關)한 연구(硏究)(II) -동력경운기(動力耕耘機)-트레일러 시스템의 운동(運動)모델의 개발(開發))

  • Park, K.J.;Ryu, K.H.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-29
    • /
    • 1987
  • A 10-degree of freedom mathematical model of motion for power tiller-trailer system was developed. This model can predict motion characteristics of power tiller trailer system while travelling over smooth and irregular ground surfaces under various operating conditions. The model provide, the fundamental data needed to improve the stability of power tiller-trailer systems.

  • PDF

Physiology of Eye Movements (안구 운동의 생리)

  • Kim, Ji Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.173-181
    • /
    • 1999
  • Eye movements serve vision by placing the image of an object on the fovea of each retina, and by preventing slippage of images on the retina. The brain employs two modes of ocular motor control, fast eye movements (saccades) and smooth eye movements. Saccades bring the fovea to a target, and smooth eye movements prevent retinal image slip. Smooth eye movements comprise smooth pursuit, the optokinetic reflex, the vestibulo-ocular reflex (VOR), vergence, and fixation. Saccades achieve rapid refixation of targets that fall on the extrafoveal retina by moving the eyes at peak velocities that can exceed $700^{\circ}/s$. Various brain lesions can affect saccadic latency, velocity, or accuracy. Smooth pursuit maintains fixation of a slowly moving target. The pursuit system responds to slippage of an image near the fovea in order to accelerate the eyes to a velocity that matches that of the target. When smooth eye movements velocity fails to match target velocity, catch-up saccades are used to compensate for limited smooth pursuit velocities. The VOR subserves vision by generating conjugate eye movements that are equal and opposite to head movements. If the VOR gain (the ratio of eye velocity to head velocity) is too high or too low, the target image is off the fovea, and head motion causes oscillopsia, an illusory to-and-fro movement of the environment.

  • PDF

ECAM Control System Based on Auto-tuning PID Velocity Controller with Disturbance Observer and Velocity Compensator

  • Tran, Quang-Vinh;Kim, Won-Ho;Shin, Jin-Ho;Baek, Woon-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • This paper proposed an ECAM (Electronic cam) control system which has simple and general structure. The proposed cam controller adopted the linear and polynomial curve-fitting method to generates a smooth cam profile curve function. Smooth motion trajectory of master actuator guarantees the good performance of slave motion and has an important effect on the interpolation quality of ECAM. The auto-tuning PID velocity controller was applied to overcome the uncertainties in ECAM, and the gains of the controller are updated continuously to ensure the consistency of system performance under varying working conditions. The robustness of system against the varying load torque disturbances and noises is guaranteed by using the load torque disturbance observer to suppress the disturbance on master actuator. The velocity compensator was applied to compensate the degradation of performance of slave motion caused from the varying driving speed of master motion. The stability and validity of the proposed ECAM control system was verified by simulation results.

Synthesis of Captured Human Motion using Kalman Filter (동작 포착을 이용한 인체 동작의 생성)

  • Jung, SoonKi;Sul, ChangWhan;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • This paper deals with character animation using motion capture. The captured motion requires the editing process to smooth the jerky motion by the sensor noise, or to combine several clip-motion libraries. For this purpose, we describe a simple technique for editing the captured motion using the Kalman filter technique. Our formulation allows the generated motion to satisfy the kinematic constraints of the human model. Furthermore, it provides us with a multi-level control mechanism of the motion resolution by changing the uncertainty of the measurement model and the seamless motion transition.

  • PDF