• Title/Summary/Keyword: Soft ground

Search Result 1,328, Processing Time 0.026 seconds

The Reality and Problem of Soft Ground Improvement Construction (연약지반 개량 시공의 실제와 문제점)

  • Choi, Gwi-Bong;Hwang, Soung-Won;Kim, Jong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.672-679
    • /
    • 2008
  • During recent years, the large soft ground improvements very rapidly increase with industrial development and it is the types and scales of structure that is enlarged by degree. Then, we must enter construct equipment to improve soft ground and we fulfilled works by carrying out soft clay soil to gain trafficability for them. For improving the soft ground, we lay geotextile on soft clay ground and fill the filter sand that can drain the pore water. Then, we landfill cover soil for come by trafficability of construction tools. Ater that we penetrate vertical drain for dehydration through soft ground. there are very complicated works. For these reason we suggest the methods of soft ground improvement constructions.

  • PDF

An Experimental Study on the Development of Soft Ground Firming Agent Using EAF Reduction Slag (전기로 환원 슬래그를 이용한 연약지반 고화재 개발에 관한 실험적 연구)

  • Lee, Kang-Seok;Lee, Yoon-Kyu;Choi, Jae-Seok;Han, Man-Hae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.998-1001
    • /
    • 2010
  • Most firming agent used in Korea is cement-firming agent. Cement-firming agent absorb water for combination, and then it makes ettringite. Through this chemical process, soft ground is firmed by cement-firming agent. Although most cement-firming agent used in Korea made from CSA, it relies on imports. Therefore, the development of soft ground firming agent using new materials is required. In this study, we suggested that EAF reduction slag not used for anything in the steel industry is available for material of soft ground firming agent. If EAF reduction slag is used in soft ground firming agent, it will be possible to solve the problem with treatment of slag and improvement of soft ground.

  • PDF

Effect of Water Content Change of Soft Clay on Strength of Solidification Agent Treated Soil (연약점토의 함수비 변화가 고화처리토의 강도에 미치는 영향)

  • 김광빈;이용안;이광준;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.553-560
    • /
    • 2002
  • The improvement effect of soft ground is estimated by unconfined strength mainly. The unconfined strength of solidification agent treated soil is likely to vary with ununiformed mixing ratio and water content change of in-situ ground place by place. So, it is unreasonable to apply a solidification agent mixing ratio obtained from laboratory test results on all over the soft ground. In this study, it was analysed how the unconfined strength would be effected by the water content of soft ground. For this study, a series of unconfined compressive tests are peformed on various water content soil samples. The test results showed that the strength was fallen to 30∼80% by two times increase of water content approximately, This means that strength of solidification agent treated soil is influenced greatly by water content of raw soft ground and mixing ratio of solidification agent. It was suggested that the method how to decide the mixing ratio with soft ground water content.

  • PDF

Behavior and Application of Jacket pack anchor in Soft ground (연약지반상에 자켓팩앵커의 적용과 거동특성)

  • Kim, Tae-Seob;Cho, Yoon-Ju;Jung, Chang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1065-1072
    • /
    • 2010
  • The excavation site in the new city of inchon songdo is distributed with soft reclaimed soil and marine deposit. So, the general ground anchor is not applied to this layer of soft ground as the earth retaining support system, because of settlement. And then, Jacket pack anchor which is newly developed in order to increasing the pullout resistance by certain grout bulb formation and expansion effect in soft ground is applied to this site instead of the general ground anchor. Though the maximum horizontal displacement shows about 30mm~100mm (The maximum horizontal displacement/excavation depth$\fallingdotseq$0.32~1.0%) according to excavation sequence, generally excavation work finished stably. Also, load cell after setting shows almost increasing trend with increasing horizontal displacement. It means that the settlement of Jacket pack anchor in soft ground is good. From the result of this case, we knew that Jacket pack anchor was able to use the earth retaining support system in soft ground. Using Jacket pack anchor in soft ground, The allowance of the horizontal displacement is applied more than general value considering soil factors.

  • PDF

Back Ananlysis of Soft Ground Behavior Using Measured Results for Test Loading (시험성토 계측결과를 이용한 연약지반 거동의 역해석)

  • 김태훈;정창규;황근배;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.469-476
    • /
    • 2002
  • There are many methods to accelerate for consolidation of the soft ground but, in this study, only preloading method was used to improve the soft ground. To measure the settlement of soft ground, surface-settlement plates were installed at several points. To examine settlement behavior of soft ground, back analysis was done using the measured results. In the back analysis, consolidation parameter( $c_{v}$) were obtained and it was compared with test result for undisturbed sample.e.

  • PDF

Experimental Study on Soft Ground with DCM Column (DCM 타설 지반에 관한 실내모형실험)

  • Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 2020
  • This study described the result of laboratory model tests, in order to compare the improvement effect of the DCM column installed on the soft ground according to DCM column type. In the laboratory model test, the non-reinforced type and the 3 types of DCM column were applied, and the behavior (settlement, lateral flow) of soft ground was evaluated under the surcharge load condition for each type. The settlement evaluation result showed that the settlement of soft ground without DCM column occurred rapidly under the low load condition, but the settlement of the soft ground with the DCM column had relatively small settlement. The evaluation result of lateral flow in the soft ground showed that the soft ground with DCM column had lower lateral displacement than the soft ground without DCM column. Especially, the lateral displacement under the same load condition decreased in the order of pile type, wall type, and grid type. Therefore, it confirmed that the improvement effect of soft ground was excellent when the DCM of grid type was applied for settlement and lateral flow.

A Study on Ground Heave Characteristics of Soft Ground with DCM (DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.75-84
    • /
    • 2020
  • This paper described the analysis result on heaving of soft ground with DCM column type, based on the results of laboratory model tests on the soft ground with DCM column. The heave characteristics of the soft ground were evaluated according to the application of DCM column in soft ground. The results showed that the heaving of soft ground without DCM column occurred rapidly when the lateral deformation of soft ground increased significantly under the 4th load step condition. In addition, the heaving of soft ground in final load step caused tensile failure of the ground surface. The maximum heaving of the soft ground with the DCM column occurred in the final load step, and the heaving quantity decreased in the order of pile, wall, and grid type. Especially, the soft ground with DCM of grid type effectively resisted ground heaving, even if it was extremely failure in the bottom ground of embankment. The results of the maximum heaving according to the measurement point showed that the heaving of the soft ground with DCM of grid type was 3.1% and 1.6% compared to that of the pile and wall type at the location of LVDT-1, and the heaving of the LVDT-2 position was 1.0% and 2.1%, respectively.

A Study on Lateral Movement of Improved Soft Ground under Embankment (성토하부 개량된 연약지반의 측방이동에 관한 연구)

  • Hong, Won-Pyo;Han, Jung-Geun;Park, Jae-Seok;Kim, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1094-1101
    • /
    • 2005
  • The stability of embankment on the soft ground has included problems on stabilities of embanked body and soft soil, which related with vertical displacement and lateral movement of the soft ground especially. The judge methods for the potentialities of lateral movement have been used in order to stabilization assessment during and after construction of the embankment. In this study, the judge methods on the improved soft ground suggested, which compared with exist judge methods on lateral movement. It is due to recent trend using embanked structures on the soft ground most of improved.

  • PDF

Effects of Deep Mixed Method Construction Within the Soft ground (연약지반의 심층혼합처리공법의 시공효과)

  • ;;Li Guang Fan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.160-168
    • /
    • 2001
  • This study aims at the development of computer program for the deformation analysis of soft ground, and using this computer program, study the constraint effect of deformation heaving, lateral displacement of the soft ground reinforced with improvement of soft ground up to hard strata, under intact state(natural). The following results are obtained. 1. Improvement of soft ground to the hard strata works well against the settlement of neighboring ground. 2. the larger the rigidity or width of improvement of layer to hard strata is, the less settlement occurs. 3. Improvement of soft ground to the hard strata is of no use.

  • PDF

Behavior of Variable Cross-Section Soft Ground Reinforced Foundation in Soft Grounds (연약지반에 적용된 변단면 연약지반보강기초의 거동분석)

  • Kim, Khi-Woong;Kim, Dong-Wook;Jo, Myoung-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • Compressive axial behavior of the variable cross-section soft ground reinforced foundation is investigated from the field load test results at ${\bigcirc}{\bigcirc}$ construction site in Incheon city. Variable cross-section soft ground reinforced foundation is a type of partial-displacement pile formed by mixing bidding material with in situ soils to obtain a rigid and strong variable cross-section column in a relatively soft ground. The foundations are usually constructed as a group; however in this study, only single foundation was installed and tested under compressive axial load on foundation head. For the comparison of the variable cross-section soft ground reinforced foundation axial behavior, behavior of typical Pretensioned spun high strength concrete (PHC) pile constructed on a relatively soft ground near the surface was analyzed. It was concluded that variable cross-section soft ground reinforced foundation efficiently resists against axial load with sufficient stiffness and strength within a considerable range of axial load magnitude.