• 제목/요약/키워드: Software receiver

검색결과 330건 처리시간 0.025초

Implementation and Experimental Test Result of a Multi-frequency and Multi-constellation GNSS Software Receiver Using Commercial API

  • Han, Jin-Su;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2019
  • In this paper, we implement a navigation software of a Global Navigation Satellite System (GNSS) receiver based on a commercial purpose GNSS software receiver platform and verify its performance by performing experimental tests for various GNSS signals available in Korea region. The SX3, employed in this paper, is composed of an application program and a Radio Frequency (RF) frontend, and can capture and process multi-constellation and multi-frequency GNSS signals. All the signal processing procedure of SX3 is accessible by the receiver software designer. In particular for an easy research and development, the Application Programing Interface (API) of the SX3 has a flexible architecture to upgrade or change the existing software program, equipped with a real-time monitoring function to monitor all the API executions. Users can easily apply and experiment with the developed algorithms using a form of Dynamic Link Library (DLL) files. Thus, by utilizing this flexible architecture, the cost and effort to develop a GNSS receiver can be greatly reduced.

PC기반 실시간 소프트웨어 GPS 수신기 설계 (Design of a PC based Real-Time Software GPS Receiver)

  • 고선준;원종훈;이자성
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권6호
    • /
    • pp.286-295
    • /
    • 2006
  • This paper presents a design of a real-time software GPS receiver which runs on a PC. The software GPS receiver has advantages over conventional hardware based receivers in terms of flexibility and efficiency in application oriented system design and modification. In odor to reduce the processing time of the software operations in the receiver, a shared memory structure is used with a dynamic data control, and the byte-type IF data is processed through an Open Multi-Processing technique in the mixer and integrator which requires the most computational load. A high speed data acquisition device is used to capture the incoming high-rate IF signals. The FFT-IFFT correlation technique is used for initial acquisition and FLL assisted PLL is used for carrier tracking. All software modules are operated in sequence and are synchronized with pre-defined time scheduling. The performance of the designed software GPS receiver is evaluated by running it in real-time using the real GPS signals.

Galileo BOC(1,1) Signal Tracking using GPS/Galileo Software Receiver

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.285-289
    • /
    • 2006
  • In this paper, a design and implementation of GPS/Galileo software receiver is given. As a GPS receiver, it is able to perform every function of receiver such as acquisition, code and carrier tracking, navigation bit extraction, navigation data decoding, pseudorange calculations, and position calculations. A method to acquire and track the Galileo BOC(1,1) signal is also required because the correlation of BOC(1,1) signal has multiple peaks different from that of GPS signal. Therefore, a method to detect the main-peak in correlation function of BOC signal is required to avoid false acquisition. In this paper, very-early, very late correlation is implemented to track the correct main peak. The performance of implemented GPS/Galileo software receiver with BOC(1,1) signal tracking feature is evaluated with GPS/Galileo IF signal generator.

  • PDF

Software GNSS Receiver for Signal Experiments

  • Kovar, Pavel;Seidl, Libor;Spacek, Josef;Vejrazka, Frantisek
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.391-394
    • /
    • 2006
  • The paper deals with the experimental GNSS receiver built at the Czech Technical University for experiments with the real GNSS signal. The receiver is based on software defined radio architecture. Receiver consists of the RF front end and a digital processor based on programmable logic. Receiver RF front end supports GPS L1, L2, L5, WAAS/EGNOS, GALILEO L1, E5A, E5B signals as well as GLONASS L1 and L2 signals. The digital processor is based on Field Programmable Gate Array (FPGA) which supports embedded processor. The receiver is used for various experiments with the GNSS signals like GPS L1/EGNOS receiver, GLONASS receiver and investigation of the EGNOS signal availability for a land mobile user. On the base of experimental GNSS receiver the GPS L1, L2, EGNOS receiver for railway application was designed. The experimental receiver is also used in GNSS monitoring station, which is independent monitoring facility providing also raw monitoring data of the GPS, EGNOS and Galileo systems via internet.

  • PDF

An Efficient Correlation Scheme for the GPS Software Receiver

  • Lim, Deok-Won;Cho, Deuk-Jae;Park, Chan-Sik;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1216-1221
    • /
    • 2005
  • The GPS software receiver based on the SDR(Software Defined Radio) technology provides the ability to easily adopt other signal processing algorithms without changing or modifying the hardware of the GPS receiver. However, it is difficult to implement the GPS software receiver using a commercial processor because of heavy computation load for processing the GPS signals in real time. This paper proposes an efficient GPS signal processing scheme and correlator structure to reduce the computation load for processing the GPS signal in the GPS software receiver, which uses a patterned look-up table method to generate the correlation value between the GPS signals and the replica signals. In this paper, it is explained that the computation load of the proposed scheme is much smaller than that of the previous GPS signal processing scheme. Finally, the processing time of the proposed scheme is compared with that of the previous scheme, and the improvement is shown from the viewpoint of the computation load.

  • PDF

Design and Applications of a Generalized Software-Based GNSS IF Signal Generator

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.211-215
    • /
    • 2006
  • In this paper, design and applications of a generalized, versatile and customizable IF signal generator that can model the modernized GPS and Galileo signal is given. It generates IF sampled data that can be directly used by a software receiver. Entire constellation of satellites which is independent of satellite-user geometry is easily determined using a real or simulated ephemeris data. Since the IF center frequency, sampling frequency and quantization bit number are user location dependent parameters, their effects are also considered in IF signal generator. The generalized IF signal generator will be very well suited for the development phase of a software receiver due to its versatility. The full access to the sampling frequency, front-end filter definition and ADC parameters also offers a great opportunity for cost-effective analysis of tracking loops and error mitigation techniques at the receiver level. Interference sources can be easily added to the generator to simulate specific environments. This software IF signal generator can also be used to feed a multi-frequency multi-system software receiver for the prototyping of a combined GPS/Galileo receiver. The test result using the generated signals and a real software receiver shows the effectiveness of the implemented IF signal generator.

  • PDF

소프트웨어 기반 Loran-C 신호 처리 (Software-Based Loran-C Signal Processing)

  • 임준혁;임성혁;김우현;지규인
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.188-193
    • /
    • 2010
  • With GPS being the primary navigation system, Loran use is in steep decline. However, according to the final report of vulnerability assessment of the transportation infrastructure relying on the global positioning system prepared by the John A. Volpe National Transportation Systems Center, there are current attempts to enhance and re-popularize Loran as a GPS backup system through the characteristic of the ground based low frequency navigation system. To advance the Loran system such as Loran-C modernization and eLoran development, research is definitely needed in the field of Loran-C receiver signal processing as well as Loran-C signal design and the technology of a receiver. We have developed a set of Matlab tools, which implement a software Loran-C receiver that performs the receiver's position determination through the following procedure. The procedure consists of receiving the Loran-C signal, cycle selection, calculation of the TDOA and range, and receiver's position determination through the Least Square Method. We experiences the effect of an incorrect cycle selection and various error factors (ECD, ASF, sky wave, CRI, etc.) from the result of the Loran-C signal processing. It is apparent that researches which focus on the elimination and mitigation of various error factors need to be investigated on a software Loran-C receiver. These aspects will be explored in further work through the method such as PLL and Kalman filtering.

소프트웨어 기반의 실시간 GPS L1 수신기를 위한 블록 상관기 (Block Correlator for Real-Time GPS L1 Software Receiver)

  • 김태희;이상욱
    • 한국위성정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.80-85
    • /
    • 2011
  • 본 논문에서는 소프트웨어 기반의 실시간 GPS L1 수신기에 대한 블록 상관기법을 제안한다. 최근 다양한 위성항법 환경에서 보다 효율적인 항법 수신기 개발을 위하여 소프트웨어 기반의 실시간 수신기 개발이 필요하다. 실시간 소프트웨어 수신기는 입력신호 처리부, 신호획득부, 신호추적부, 항법데이터 처리부, 항법해 계산부로 구성되고 각 처리부는 해당 기능을 수행하기 위한 단위 컴포넌트로 구성된다. 이러한 소프트웨어 환경에서의 수신기 개발을 용이하게 수행하기 위한 소프트웨어 기반의 수신기를 개발함으로써 다양한 모델을 적용하거나 새로운 컴포넌트 조합으로 다양한 시뮬레이션을 수행할 수 있다는 장점을 제공하고 있다. 본 논문에서는 이러한 소프트웨어 기반의 수신기가 실시간의 성능을 나타낼 수 있는 블록 상관기법을 제안하고 이에 대한 성능을 검증하였다.

A Design and Implementation of Software Defined Radio for Rapid Prototyping of GNSS Receiver

  • Park, Kwi Woo;Yang, Jin-Mo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권4호
    • /
    • pp.189-203
    • /
    • 2018
  • In this paper, a Software Defined Radio (SDR) architecture was designed and implemented for rapid prototyping of GNSS receiver. The proposed SDR can receive various GNSS and direct sequence spread spectrum (DSSS) signals without software modification by expanded input parameters containing information of the desired signal. Input parameters include code information, center frequency, message format, etc. To receive various signal by parameter controlling, a correlator, a data bit extractor and a receiver channel were designed considering the expanded input parameters. In navigation signal processing, pseudorange was measured based on Coordinated Universal Time (UTC) and appropriate navigation message decoder was selected by message format of input parameter so that receiver position can be calculated even if SDR is set up various GNSS combination. To validate the proposed SDR, the software was implemented using C++, CUDA C based on GPU and USRP. Experimentation has confirmed that changing the input parameters allows GPS, GLONASS, and BDS satellite signals to be received. The precision of the position from implemented SDR were measured below 5 m (Circular Error Probability; CEP) for all scenarios. This means that the implemented SDR operated normally. The implemented SDR will be used in a variety of fields by allowing prototyping of various GNSS signal only by changing input parameters.

Receiver-driven Cooperation-based Concurrent Multipath Transfer over Heterogeneous Wireless Networks

  • Cao, Yuanlong;Liu, Qinghua;Zuo, Yi;Huang, Minghe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2354-2370
    • /
    • 2015
  • The advantages of employing SCTP-based Concurrent Multipath Transfer (CMT) have been demonstrated to be very useful for data delivery over multi-homed wireless networks. However, there is still significant ongoing work addressing some remaining limitations and challenges. The most important concern when applying CMT to data delivery is related to handling packet reordering and buffer blocking. Another concern on this topic is that current sender-based CMT solutions seldom consider balancing the overhead and sharing the load between the sender and receiver. This paper proposes a novel Receiver-driven Cooperation-based Concurrent Multipath Transfer solution (CMT-Rev) with the following aims: (i) to balance overhead and share load between the sender and receiver, by moving some functions including congestion and flow control from the sender onto receiver; (ii) to mitigate the data reordering and buffer blocking problems, by using an adaptive receiver-cooperative path aggregation model, (iii) to adaptively transmit packets over multiple paths according to their receiver-inspired sending rate values, by employing a new receiver-aware data distribution scheduler. Simulation results show that CMT-Rev outperforms the existing CMT solutions in terms of data delivery performance.