• Title/Summary/Keyword: Software reliability growth Models

Search Result 68, Processing Time 0.024 seconds

POSSIBILITIES AND LIMITATIONS OF APPLYING SOFTWARE RELIABILITY GROWTH MODELS TO SAFETY-CRITICAL SOFTWARE

  • Kim, Man-Cheol;Jang, Seung-Cheol;Ha, Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.129-132
    • /
    • 2007
  • It is generally known that software reliability growth models such as the Jelinski-Moranda model and the Goel-Okumoto's non-homogeneous Poisson process (NHPP) model cannot be applied to safety-critical software due to a lack of software failure data. In this paper, by applying two of the most widely known software reliability growth models to sample software failure data, we demonstrate the possibility of using the software reliability growth models to prove the high reliability of safety-critical software. The high sensitivity of a piece of software's reliability to software failure data, as well as a lack of sufficient software failure data, is also identified as a possible limitation when applying the software reliability growth models to safety-critical software.

A New Methodology for Software Reliability based on Statistical Modeling

  • Avinash S;Y.Srinivas;P.Annan naidu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.157-161
    • /
    • 2023
  • Reliability is one of the computable quality features of the software. To assess the reliability the software reliability growth models(SRGMS) are used at different test times based on statistical learning models. In all situations, Tradational time-based SRGMS may not be enough, and such models cannot recognize errors in small and medium sized applications.Numerous traditional reliability measures are used to test software errors during application development and testing. In the software testing and maintenance phase, however, new errors are taken into consideration in real time in order to decide the reliability estimate. In this article, we suggest using the Weibull model as a computational approach to eradicate the problem of software reliability modeling. In the suggested model, a new distribution model is suggested to improve the reliability estimation method. We compute the model developed and stabilize its efficiency with other popular software reliability growth models from the research publication. Our assessment results show that the proposed Model is worthier to S-shaped Yamada, Generalized Poisson, NHPP.

PROCEDURE FOR APPLICATION OF SOFTWARE RELIABILITY GROWTH MODELS TO NPP PSA

  • Son, Han-Seong;Kang, Hyun-Gook;Chang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1065-1072
    • /
    • 2009
  • As the use of software increases at nuclear power plants (NPPs), the necessity for including software reliability and/or safety into the NPP Probabilistic Safety Assessment (PSA) rises. This work proposes an application procedure of software reliability growth models (RGMs), which are most widely used to quantify software reliability, to NPP PSA. Through the proposed procedure, it can be determined if a software reliability growth model can be applied to the NPP PSA before its real application. The procedure proposed in this work is expected to be very helpful for incorporating software into NPP PSA.

A generalized form of software reliability growth (소프트웨어 신뢰도 성장모델의 일반형)

  • 유재년
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.11-16
    • /
    • 1998
  • We analyze the software reliability growth models for the specified period from the viewpoint of theory of differential equations. we defien a genralized form of reliability growth models as follws: dN(t)/dt = b(t)f(N(t)), Where N(t) is the number of remaining faults and b(t) is the failure rate per software fault at time t. We show that the well-known three software reliability growth models - Goel - Okumoto, s-shaped, and Musa-Okumoto model- are special cases of the generalized form. We, also, extend the generalized form into an extended form being dN(t)/dt = b(t, .gamma.)f(N(t)), The genneralized form can be obtained if the distribution of failures is given. The extended form can be used to describe a software reliabilit growth model having weibull density function as a fault exposure rate. As an application of the generalized form, we classify three mentioned models according to the forms of b(t) and f(N(t)). Also, we present a case study applying the generalized form.

  • PDF

Reliability Models for Application Software in Maintenance Phase

  • Chen, Yung-Chung;Tsai, Shih-Ying;Chen, Peter
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • With growing demand for zero defects, predicting reliability of software systems is gaining importance. Software reliability models are used to estimate the reliability or the number of latent defects in a software product. Most reliability models to estimate the reliability of software in the literature are based on the development lifecycle stages. However, in the maintenance phase, the software needs to be corrected for errors and to be enhanced for the requests from users. These decrease the reliability of software. Software Reliability Growth Models (SRGMs) have been applied successfully to model software reliability in development phase. The software reliability in maintenance phase exhibits many types of systematic or irregular behaviors. These may include cyclic behavior as well as long-term evolutionary trends. The cyclic behavior may involve multiple periodicities and may be asymmetric in nature. In this paper, SGRM has been adapted to develop a reliability prediction model for the software in maintenance phase. The model is established using maintenance data from a commercial shop floor control system. The model is accepted to be used for resource planning and assuring the quality of the maintenance work to the user.

Bayesian Inference and Model Selection for Software Growth Reliability Models using Gibbs Sampler (몬테칼로 깁스방법을 적용한 소프트웨어 신뢰도 성장모형에 대한 베이지안 추론과 모형선택에 관한 연구)

  • 김희철;이승주
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.3
    • /
    • pp.125-141
    • /
    • 1999
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability with Poisson prior information are studied. For model selection, we explored the relative error.

  • PDF

Modelling the Failure Rate Function in Coverage and Software Reliability Growth

  • Park, Joong-Yang;Kim, Young-Soon;Park, Jae-Heung
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.110-121
    • /
    • 2004
  • There is a new trend of incorporating software coverage metrics into software reliability modelling. This paper proposes a coverage-based software reliability growth model. Firstly, the failure rate function in coverage is analytically derived. Then it is shown that the number of detected faults follows a Nonhomogeneous Poisson distribution of which intensity function is the failure rate function in coverage. Practical applicability of the proposed models is examined by illustrative numerical examples.

A Software Reliability Growth Model Based on Gompertz Growth Curve (Gompertz 성장곡선 기반 소프트웨어 신뢰성 성장 모델)

  • Park Seok-Gyu;Lee Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1451-1458
    • /
    • 2004
  • Current software reliability growth models based on Gompertz growth curve are all logarithmic type. Software reliability growth models based on logarithmic type Gompertz growth curve has difficulties in parameter estimation. Therefore this paper proposes a software reliability growth model based on the logistic type Gompertz growth curie. Its usefulness is empirically verified by analyzing the failure data sets obtained from 13 different software projects. The parameters of model are estimated by linear regression through variable transformation or Virene's method. The proposed model is compared with respect to the average relative prediction error criterion. Experimental results show that the pro-posed model performs better the models based on the logarithmic type Gompertz growth curve.

Virtual Coverage: A New Approach to Coverage-Based Software Reliability Engineering

  • Park, Joong-Yang;Lee, Gyemin
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.467-474
    • /
    • 2013
  • It is common to measure multiple coverage metrics during software testing. Software reliability growth models and coverage growth functions have been applied to each coverage metric to evaluate software reliability; however, analysis results for the individual coverage metrics may conflict with each other. This paper proposes the virtual coverage metric of a normalized first principal component in order to avoid conflicting cases. The use of the virtual coverage metric causes a negligible loss of information.

Software Reliability Prediction Using Predictive Filter (예측필터를 이용한 소프트웨어 신뢰성 예측)

  • Park, Jung-Yang;Lee, Sang-Un;Park, Jae-Heung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2076-2085
    • /
    • 2000
  • Almost all existing software reliability models are based on the assumptions of he software usage and software failure process. There, therefore, is no universally applicable software reliability model. To develop a universal software reliability model this paper suggests the predictive filter as a general software reliability prediction model for time domain failure data. Its usefulness is empirically verified by analyzing the failure datasets obtained from 14 different software projects. Based on the average relative prediction error, the suggested predictive filter is compared with other well-known neural network models and statistical software reliability growth models. Experimental results show that the predictive filter generally results in a simple model and adapts well across different software projects.

  • PDF