• Title/Summary/Keyword: Soil Depth

Search Result 2,447, Processing Time 0.032 seconds

Mathematical Description of Seedling Emergence of Rice and Echinochloa species as Influenced by Soil burial depth

  • Kim Do-Soon;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.362-368
    • /
    • 2006
  • A pot experiment was conducted to investigate the effects of soil burial depth on seedling emergences of rice (Oryza sativa) and Echinochloa spp. and to model such effects for mathematical prediction of seedling emergences. When the Gompertz curve was fitted at each soil depth, the parameter C decreased in a logistic form with increasing soil depth, while the parameter M increased in an exponential form and the parameter B appeared to be constant. The Gompertz curve was combined by incorporating the logistic model for the parameter C, the exponential model for the parameter M, and the constant for the parameter B. This combined model well described seedling emergence of rice and Echinochloa species as influenced by soil burial depth and predicted seedling emergence at a given time after sowing and a soil burial depth. Thus, the combined model can be used to simulate seedling emergence of crop sown in different soil depths and weeds present in various soil depths.

Monitoring physical and chemical properties of soil in Chungcheongbuk-do

  • Yun-Gu Kang;Jae-Han Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.667-676
    • /
    • 2022
  • The soil physical and chemical properties are the main factors that influence plant productivity and soil fertility. Since 1999, South Korea has been conducting a survey on changes in the agricultural environment survey every four years. The purpose of the present study is to monitor the physical and chemical properties of soil in Chungcheongbuk-do. Soil samples were collected from the exact sites of the aforementioned environment survey, and land use and cultivated crops were also investigated. From a Pearson correlation analysis, it was found that the total carbon contents were most negatively affected by the soil depth. The bulk density of soil increased up to a depth of 40 cm but decreased to a depth of 60 cm. The porosity and moisture of soil generally decreased, but the porosity increased at a depth of 50 - 60 cm. Chemical properties of soil gradually decreased with an increase of the soil depth from 0 to 70 cm, but little change was observed in soil pH with soil depth. In addition, the organic matter contents of the soil at a depth of 30 cm or more were below the optimal range. The soil of Chungcheongbuk-do thus requires organic matter application as a whole, and correction of items that are partially out of the optimal range is necessary.

Analysis of Bias in the Runoff Results Due to the Application of Effective Soil Depth (유효토심을 적용한 유출해석 결과의 왜곡 분석)

  • Sunguk Song;Chulsang Yoo
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • This study examines the possible problem in the rainfall-runoff analysis process using the VIC (Variable Infiltration Capacity) model caused by using the effective soil depth instead of the soil depth. The parameters of the model are determined as follows. First, parameters that can be determined using available numerical information are fixed. For parameters related to direct runoff and base runoff, the recommended values of the VIC model are applied. In the case of soil depth, four cases are considered: (1) the effective soil depth is applied as the soil depth, (2) 1.5 times of the effective soil depth is applied as the soil depth by reflecting the vertical structure of the soil layer, (3) 1.25 times of the effective soil depth, and (4) 2.0 times of the effective soil depth as alternative soil depths. This study simulates the rainfall-runoff for the period from 1983 to 2020 targeting the Chungju Dam and Soyang River Dam basins of the Han River system. As a result of the study, it is confirmed that when the effective soil depth is applied instead of the soil depth, direct runoff and baseflow have opposite effects, and direct runoff increases by more than 3% while base runoff decreases by the same scale. In addition, the most influential factor in the estimation of the effective soil depth in the Chungju Dam and Soyanggang Dam basins is found to be the proportion of rock outcrop area. The difference between the direct runoff ratio and the base runoff ratio in the two basins is conformed significantly different due to the influence of the rock outcrop area.

Evaluation of minimum depth of soil cover and reinforcement of soil cover above soil-steel bridge (지중강판 구조물의 최소토피고 평가 및 상부토피 보강 방안)

  • Jung, Hyun-Sik;Lee, Jong-Ku;Cho, Sung-Min;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.425-432
    • /
    • 2004
  • In this paper, the results of the numerical analysis for the minimum depth of soil cover have been compared with those of currently suggested codes. Based on this comparison, the minimum depth of soil cover for the structures with long spans was suggested. Results showed that the actual depth of the soil cover required against soil failure over a circular and low-profile arch structure does not vary significantly with the size of the span and for the circular structure, the minimum depth of the soil cover was about 1.5m, and for the low-profile arch structures, below about 1.6m. And the previously established code in which the minimum depth of soil cover is defined to linearly increase with the increase in the span (CHBDC, 2001) was very conservative. For the structure with the relieving slab, the maximum live load thrust was reduced by about 36 percent and the maximum moment about 81 percent. The numerical analysis gave more conservative estimation of the live-load thrusts than the other design methods.

  • PDF

Annual Carbon Storage by Fine Root Production in Quercus variabilis Forests (충주지역 굴참나무림의 세근에 의한 탄소축적)

  • 박관수;임재구
    • Korean Journal of Environment and Ecology
    • /
    • v.17 no.4
    • /
    • pp.360-365
    • /
    • 2004
  • This study was carried out to estimate net fine root carbon production in Quercus variabilis natural stands in Chungiu area. Soil samples were taken in 0-30cm, 30-60cm, and 60-90cm soil depths from April to November using soil sampler. Fine root carbon biomass was higher in 0-30cm soil depth than the other soil depths. Net fine root carbon production (kg/㏊/yr) were 671kg in 0-30cm soil depth, 599kg in 30-60cm soil depth, and 479kg in 60-90cm soil depth, and 1749kg in 0-90cm soil depth. fine root turnover rates were 0.43 in 0-30cm soil depth, 0.96 in 30-60cmsoil depth, and 1.03 in 60-90cm soil depth. N, p, K, and Mg input into the soil (kg/㏊/yr) due to fine root turnover at 0-90cm soil depth in this study were 33.9kg, 1.8kg, 11.4kg and 20.1kg, respectively.

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

Variation of Microbial Community Along Depth in Paddy and Upland Field (논과 밭 토양에서 토층간 미생물 군집의 차이)

  • Kim, Chan-Yong;Park, Kee-Choon;Yi, Young-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.139-143
    • /
    • 2009
  • We examined the vertical distribution of specific microbial groups and the patterns of microbial community structure within the soil profile using phospholipid fatty acid (PLFA). Samples were collected from the soil surface down to 15 cm in depth from paddy and upland fields located in Daegu, Korea. The two fields have been fertilized with only chemical fertilizers N, P, K for 33 years. Principal component analysis of the PLFA signatures indicated that the composition of the soil microbial communities changed significantly with the cultivation practices and soil depth, suggesting that cultivation practices of paddy and upland fields had more significant influence on soil microbial community than the soil depth did. The soil microbial communities changed more drastically with soil depth in upland field than in paddy field, with making thicker soil surface in paddy field in terms of soil microbial community. The ratios of cyclopropyl/monoenoic precursors and total saturated/total monounsaturated fatty acids increased with soil depth, suggesting that the deeper soil horizons are more carbon-limited and anaerobic than surface soil. The community analysis using PLFAs as biomarkers revealed that Gram-positive bacteria and actinomycetes tended to increase in proportional abundance with increasing soil depth, while the abundance of Gram-negative bacteria and fungi were highest at the soil surface and substantially lower in the subsurface.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

Soil Properties of Quercus variabilis Forest on Youngha Valley in Mt. Worak National Park

  • Choi, Hyeon-Jin;Jeon, In-Yeong;Shin, Chang-Hwan;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.439-443
    • /
    • 2006
  • Soil properties of Quercus variabilis forest on Youngha valley at Mt. Worak National Park were studied as a part of Korea National Long-Term Ecological Research. Soil sampling was carried out along the 50 cm soil depth with 10cm intervals at every quarter from May 2005 through July 2006. Fresh soil was used for $NH_4{^+}-N,\;NO_3{^-}-N$, and soil water content determination. Remaining soils were air dried in the shade, and then used for determination of soil pH, T-N, T-P and exchangeable cation. Average soil organic matter in top soil was $8.5{\pm}1.2%$ and decreased with soil depth. Bulk density of top soil was $0.82{\pm}0.07g/cm^3 $and increased with soil depth. Soil organic matter and bulk density showed a negative linear correlation ($R^2=0.8464$). Soil pH in top soil and subsoil was similar. T-N, $NH_4{^+}-N,\;NO_3{^-}-N$ and T-P in top soil were $1.9{\pm}0.5mg/g,\;7.3{\pm}1.0mg/kg,\;2.0{\pm}0.4mg/kg\;and\;0.2{\pm}0.05mg/g$, respectively. $K^+,\;Ca^{2+}\;and\;Mg^{2+}$ in top soil were $84.6{\pm}24.4,\;408.8{\pm}137.8\;and\;93.4{\pm}23.0mg/kg$, respectively. They decreased with soil depth. Amounts of organic matter, T-N, $NH_4{^+}-N,\;NO_3{^-}-N$, T-P, $K^+,\;Ca^{2+}\;and\;Mg^{2+}$ in 50 cm soil depth were 250.9, 3.45, 0.025, 0.003, 0.639, 0.181, 0.845 and 0.302 ton $ha^{-1}\;50cm-depth^{-1}$, respectively.

Study on the Standards of Proper Effective Rooting Depth for Upland Crops

  • Zhang, Yongseon;Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Seo, Mijin;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • The study was performed to determine effective soil depth with crop type. Lysimeters, filled with three types of soils (sandy loam, loam and clay loam), were used. Effective soil depths for 25 cm, 50 cm, 75 cm, and 100 cm were considered for each soil. Six crops were investigated for plant height and yield, and rooting depths: Chinese cabbage, maize, lettuce, potato, red pepper, and soybean. Experiment was conducted at the National Institute of Agricultural Sciences in Suwon from 2012 to 2014. Effective rooting depth including 70% of root ranged from 19 cm to 29 cm for Chinese cabbage, from 24 cm to 38 cm for maize, from 17 cm to 24 cm for lettuce, from 27 cm to 32 cm for soybean, and around 50 cm and 30 cm for potato and red pepper. The maximum depth was 60 cm for soybean, 50 cm for Chinese cabbage, lettuce, and potato, and 75 cm for maize and red pepper. Each crop showed high yield in the treatment with soil depth over maximum rooting depth under all soils.