• Title/Summary/Keyword: Soil crust

Search Result 33, Processing Time 0.024 seconds

한반도 온천수의 수리화학 및 영족기체 기원: 대전-충청지역을 중심으로

  • 정찬호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.115-118
    • /
    • 2004
  • The purpose of this research is to investigate the noble gas isotope and the hydrochemical characteristics of hot springs in the Chungcheong area in Korea. This study was carried. out by the financial support of Korea-Japan joint research program of KOSEF, Noble gases are very useful tracers to investigate volatile elements circulation, because of their unique isotopic compositions in various reservoirs of the Earth. Isotopic ratios of noble gases has been carried out for If hot-spring samples from Daejon and its near areas in Korea last January 2004. Helium isotope ratio gave the evidence that helium gas of different origins(air-crust mixing origin, crust-origin and mantle-origin) is supplied into hot-spring waters in Korea. We found the distinct relationship between temperature of hot springs and helium gas origin.

  • PDF

Infiltration Experiments According to the Variation of Soil Condition of Infiltration Collector Well (침투정 토양 조건에 따른 침투 실험)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.215-221
    • /
    • 2007
  • The main purpose of this study is to find the appropriate method to prevent the reduction of infiltration capacity due to sealing of soil surface. The study results indicate that installation of gravel or larger soil facilitates the drainage of infiltrated rainwater. However, considering that the infiltration capacity has been reduced since the installation, it seems that the sealing of soil surface is caused by the inflow of suspended soil into the lower sand layer. To promote the infiltration capacity by reducing the pounding of lower natural soil layer, the sand soil should be placed above the natural soil layer with shallow depth just below the larger gravel. Furthermore, the crust generated above the soil surface should be removed regularly and the sand layer above the natural soil layer should be replaced with new one so that the original infiltration capacity can be maintained properly.

Effect of Flooding and Soil Salinity on the Growth of Yam (Dioscorea batatas) Transplanted by Seedling of Aerial Bulblet in Saemangeum Reclaimed Tidal Land

  • Sohn, Yong-Man;Song, Jae-Do;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • The effect of flooding and soil salinity on the growth of yam (Dioscorea batatas) were studied on the experimantal site temporally established in the south-eastern part of Saemangeum Reclaimed Tidal Land (near Gwanghwal myun, Gimjae-gun, Jellabukdo, Korea). Yam seedlings planted by using aerial bulblet as alternative of sliced tubers, were grown for 20-days and transplanted in black-vinyl mulched ridges (about 20 cm in height) at 70cm interval by $20{\times}60cm$ spacing in the $4^{th}$ of May, 2010. Soil salinity was maintained at lower than 1.2 ds $m^{-1}$ during the growing period and did not result to salt injury in all plants. However, flooding injury very seriously led to plant death and plant mortality rates at $67{\pm}21$ and $82{\pm}9%$ of yam plants in the compost and no compost treatment, respectively, died by heavy flooding during the rainy summer season. The main reasons of the flooding injury included the decreased rainfall acceptable capacity (RAC) after the rising of water table and a slowdown of water infiltration rate after the formation of an impermeable soil crust in the furrow bottom with continuous and heavy downpour during the rainy summer season. The effect of compost treatment was not statistically observed because of the severe spatial difference caused by wet injury, although yam tuber yield was higher at 30 kg $10^{-1}$ in the compost treatment than in the no-compost treatment at 20 kg $10^{-1}$. However, the size of tuber ranged at 1.23 to 1.60 cm in diameter and 3.7 to 5.0 cm in length in all both treatment, which means they are still reproducible for the next cropping season. Conclusively, proper counter-flooding measure and soil salinity control critically important for successful yam production in Saemangeum Reclaimed Tidal Land.

Two New Species of Amanita from Korea

  • Cho, Duck-Hyun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11b
    • /
    • pp.70-70
    • /
    • 2002
  • Two new species of Amanita were collected in central areas of Korea from 1997 to 2000. They were identified, described and illustrated. One of them, Amanita longstipeta has turtle-shaped warts of crust and its base is longer under the soil than is above the soil. The other A. aureofarinosa is covered with golden yellow farina and annulus is absent. Both are solitary in soil with sand.

  • PDF

Effects of Soil Crusting and Hardening during Drying after Artificial Rainfall on Seedling Emergence of Rice and Barnyardgrass (강우처리후 토양건조에 따른 피막형성 및 경도변화가 벼와 피의 출아에 미치는 영향)

  • Lee, Byun-Woo;Kwon, Yong-Woong;Myung, Eul-Jae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.131-138
    • /
    • 1996
  • Soil crusting and hardening as a result of drying after rainfall were examined in relation to seedling emergence by employing five rice varieties (Italiconaverneco, Dadazo, and Galsaekggarakshare, Dongjinbyeo and Sumjinbyeo) and two barnyardgrass species (E. crus-gallj var. oryzjcola and E. crus-galli var. praticola). Sandy loam, loam, and silty loam soils were used. The artificial rainfall of 0, 20 and 40mm were applied after sowing and covering with 4cm soil. Air temperature and solar radiation averaged over 9 days after seeding was 31.3$^{\circ}C$ and 16.9MJ /m$^2$, respectively. Soil strength increased rapidly by drying after artificial rainfall, being greater in soils with greater amount of clay and artificial rainfall. Soil crust was formed on the surface with artificial rainfall in all soils tested. However, soil crust was exfoliated in silty loam and loam soil, and lifted as seedlings emerge. Seedling emergence of rice varieties was decreased by rainfall treatments. Sumjinbyeo and Dongjinbyeo showed much poorer seedling emergence especially in sandy loam soil than the other varieties. Poor seedling emergence of these varieties might have been caused by delayed seedling emergence which had made them expose to greater soil strength. Seedling emergence of barnyardgrasses showed no differences among soil textures and rainfall treatments, because they emerged rapidly before soil crusting and hardening were proceeded enough to hamper seedling emergence. Seedling emergence of Sumjinbyeo and Dongjinbyeo decreased with increasing soil strength averaged over 3 days to 5 days after seeding, being lowered to 80% at soil strength of 1.0kg/cm$^2$ and to 50% at 1.7kg/cm$^2$. Emergence speed of barnyardgrasses was faster than rice varieties, and E. crus-galli var. oryzjcola than E. crus-galli var. praticola. Italiconaverneco and Dadazo showed faster emergence in rice varieties. Galsaekggarakshare showed slower emergence speed than these two varieties with similar seedling emergence percentage. The greater and faster elongations of mesocotyl and incomplete leaf in rice, and of mesocotyl in barnyardgrass were the characteristics responsible for higher seedling emergence rate in the environment examined.

  • PDF

Effects of Lignocellulosic Growing Media to The Prevention of Forest Soil Erosion

  • Jo, Jong-Soo;Ha, Si Young;Jung, Ji Young;Kim, Ji-Su;Nam, Jeong Bin;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.419-431
    • /
    • 2017
  • The forest slopes cause substantial local changes in soil properties and an increase in soil erosion after extreme rainstorms. The high soil erosion rates on forest slopes need the effective use of growing media to control the soil runoff. Therefore, we prepared six different lignocellulosic growing media such as peat, perlite, and wood meal as the base materials and carboxymethyl cellulose (CMC), glucomannan, starch, old corrugated containerboard, and computer printout as the additional materials for the prevention of simulated rainfall-induced runoff. The growing media containing old corrugated containerboard efficiently reduced the percentage of soil runoff; however, it could not completely cushion the influence of crust. The best results for plant growth, except in the leaf area, were also obtained with the growing media containing old corrugated containerboard, suggesting an interesting way of paper recycling and an economic benefit for plant or crop growth in forest slope.

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

A Study on the Shallow Improvement Method for Dredged Clay Fills by the Model Tests (모형시험에 의한 준설점토지반의 표층안정기법 연구)

  • 김석열;노종구;이영철;권수영;김승욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.569-576
    • /
    • 2002
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, to compare the soil and sand-mat mixed method with sand-air jet method for shallow improvement of hydraulic fills at southern seashore, the model tests were performed. Through the model test results, the behavior of surface as disturbance of desiccation crust is analyzed.

  • PDF

Geochemical Characteristics of Soils, Sediments and Waters in stream Of Hwasun area (화순지역 토양-퇴적물-하천수의 지구화학적 특성)

  • Oh, Kang-Ho;Koh, Yeong-Koo;Youn, Seok-Tai
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.9-22
    • /
    • 2003
  • To consider environmental characteristics in the scope of geochemistry of streams, Hwasun area, soil, sediment and water samples near/in the streams were analyzed in texture and metal contents of soil and sediment and in quality in water. From those analyses, the soils are loamy sand, sandy loam, loam and silty loam in texture. And, the sediments are slightly gravelly sand, gravelly sand and gravelly muddy sand in facies. Metal contents in soils and sediments are of high near Hwasuneup and Hwasun coalfield. In peculiar, P, Co, Li, Ni, Zn and Pb exceed over crust mean contents. Physico-chemistry of above streams according to pH-Eh and Piper's diagrams indicates that the streams are, typically, assigned to natural river water. Water qualities of BOD, T-N and T-P in areas near Hwasun coalfield, Dongmyeon and Hwasuneup are polluted over V level. Enrichment factor(EF) representing metal condensation in P, Cu, Zn and Pb appear near Hwasun coalfield and Hwasuneup from the soil and sediment samples, in part. Additionally, river water in dry season is very high in BOD, T-N, $Na^+$ and ${SO_4}^{2-}$. It is suggested that the relatively high metal contents in the stream be connected with above coalfield and urban areas.