• Title/Summary/Keyword: Soils

Search Result 6,546, Processing Time 0.033 seconds

Studies on the Soil Buffer Action and Fertility of Soil Derived from the Different Parent Rocks (모암에 따른 삼림과 초지 토양의 완충능 및 비옥도에 관한 연구)

  • 장남기;임영득
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • The variations of the soil texture, $SiO_2$ /$Al_2$$O_3$ ratio, buffer action, exchangeable base, ex-changeable hydrogen, and mineral nutrients were investigated to estimate the grade of the soil fertility of the soil derived from the different parent rocks such as the granite in Kwangnung and the basalt in Chejudo. The results investigated were showed as follows : Basalt soils in Chejudo belong to sandy clay, light clay and sandy clay loam, while gramite soils in Kwangnung sandy loam. The $SiO_2$ /$AI_2$$O_3$ ratio of the grassland in Chejudo was 1.11 and that of the oak forest soils was 1.24, while granite soils in Kwangnung 1.54 and 1.46, respectively. The buffer actions of ba-salt soils against the N /10 HCI and $Ca(OH)_2$ were stronger than those of granite soils. The $SiO_2$/$Al_2$$O_3$ + $Fe_2$$O_3$ ratios of grassland and oak forest soils of basalt in Chejudo showed 1.10 and 1.24 respectively, while those of the grassland and oak forest of Kwangnung 1.44 and 1.33. The base exchange capacity of basalt soils which has higher value of exchangeable hydrogen was stronger than that of granite soils. But the base saturation of granite soils showed higher value than that of basalt soils. Water contents of basalt soils in Chejudo was lower than that of granite soils fo Kwangnung Basalt soils in Chejudo contain still more humus and total nitrogen than gran-ite soils in kwangnung, The amount of available nitrogen, available phosphorus and exchangeable calcium of granite soils were more than that of basalt soils, Therefore, estimating the soil fertility, granite soils in Kwangnung is higher than that of basalt soils in Chejudo.

  • PDF

Effect of Residual Soils on Yellowing of White Cotton Fabrics after Repeated Home Laundry (가정세탁에서 잔류오구가 백색 면직물의 황변에 미치는 영향)

  • 이일심
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.2
    • /
    • pp.137-145
    • /
    • 1997
  • The effect of accumulated residual soils in wear and wash tests on yellowing of white dress shirt was studied. The test samples after repeated home laundry at 20 households for six months were measured residual soils, $\Delta$b*.As well as, correlation between residual soils and yellowing was also examined. As a result, residual soils increased with number of wear and wash cycles, a little decreased in using with enzyme detergent. The b* value of test samples with fluorescent whitening agent were distributed -12.850~0.291. Correlation coefficient between sebum soils, protein soils and $\Delta$b* was 0.98, 0.58. Ultimately, residual sebum soils have more higher correlation than residual protein soils. Hence, residual sebum soils have more effect on yellowing than residual protein soils. therefore, effective a device as improvement of laundry condition and textile development needs for decrease of sebum soils.

  • PDF

The Laundry Habits and the Residual Soils of White Cotton Undershirts in Repeating Home Laundry (일반 가정의 세탁 습관 및 반복 세탁에 의한 백색 면 내의의 잔류 오염)

  • 치옥선;이일심
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.4
    • /
    • pp.549-559
    • /
    • 1994
  • The purpose of this study was to study accumlated residual soils which may be one of the causes for yellowing of worn cloths. Wear and wash tests of white cotton undershirts were repeated at 30 households sellected at random over a period of 60 days. Laundry conditions were similar to home laundry habits in a fact-finding survey, using a powdery heavy duty detergent containing no enzymes or enzymes. The subjects in this study were survey of laundry actual condition, the undershirts from prior to and after the final washing was measured residual soils, $L^*a^*b^*$ value and mellowness index of CIE system. D3ta were analysed by simple correlation analysis of wear and wash cycle, residual soils, whiteness The results obtained were summarized as follows: 1. Using pattern of washing machine, Presoaking was no singinificant differnece in general characteristics of survey respondent. Laundry frequency was significant difference in income level, occupation of housewives whether or not. Use of cold and hot water was significant difference in residence shape. 2. The analyzed consequences of recognition and actual behavior in connection with laundry were found variables each other to have independence or not. 3. Amount of residual sebum soils is using non-enzyme detergent were much more than in using enzyme detergent, increased linearly with increase of the number of wear and wash cycles. 4. Residual protein soils with increase of the number wear and wash cycles less than in laundering more easy than sebum soils. Since accumulated residual sebum soils were much more than residual protein soils. 5. Increase of residual soils was raised mellowness index and diminshed whiteness. yellowness index of residual sebum soils was higher than protein soils. If increase of whiteness will be incresed, amount of residual sebum soils will be decreased sebum soils. Because amount of residual sebum soils much more than protein soils, yellowness index of residual sebum soils was more higher than that of protein soils.

  • PDF

잔골재로서 하수준설토의 재활용에 관한 연구

  • Lee, Song;Chae, Jeom-Sik;Kim, Hyeok
    • 레미콘
    • /
    • no.10 s.69
    • /
    • pp.2-11
    • /
    • 2001
  • This paper describes the feasiblity of recycling sewage dredged soils as fine affrefate. This paper describes the feasibility of recycling sewage dredged soils as fine aggregate. The specific gravity of the dredged soils was smaller than that of sand due to the effect of dredged sludge. However, the grain size distribution of the dredged soils is relative well graded, and the results of the heavy metal concentration from the leaching test of the dredged soils was significantly lower than the requirements of the allowable criteria. Therefore, the effect of recycling of dredged soils on environment the as fine aggregate was negligible. Also, the specific gravity of the dredged and washed soils was similar to that of sand, and the dredged and washed soils for the most part showed lower heavy metal leaching characteristics than those of dredged soils, Also, the results of the study for evaluation the recycling feasibility of dredged and washed soils as fine affrefate. The organic impurity content of the dredged and washed soils was lower than the requirements of the Korean industrial Standards, and the mortar compressive strength using the washdredged soils also met those of the Korean industrial Standards. And, the strengths of the dredged and washed soils were over 95% of those of the NaOH-treated samples. Therefore, it is expected that the dredged soils will be able to be an alternative for fine aggregate.

  • PDF

Strength Characteristics of Light-Weighted Soils Mixed with EPS and Dredged Soils (준설토와 EPS를 혼합한 경량혼합처리토의 강도 특성)

  • 김수삼;김병일;한상재;신현영
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2002
  • Recycling of dredged soils as construction materials is experimently discussed in this paper. The strength of light-weighted soils(LWS) consisting of expanded polystyrene(EPS), dredged soils and cement is characterized by uniaxial and triaxial compression tests with varying initial water contents of dredged soils, the EPS volume and cement contents, and expanded ratio of EPS. Test results show that the strength of light-weighted soils increases with adding cement contents, whereas the strength increases with decreasing initial water contents of dredged soils and expanded ratio of EPS. It was, however, found that increasing the EPS volume makes a lower the strength of light-weighted soils.

Mineralogy and Cheimical Composition of Soils with Relation to the Types of Parent Rocks in the Northern Pusan Area (부산 북부지역의 모암유형에 따른 토양의 구성광물 및 화학성분)

  • 김의선;황진연;김진섭;함세영;김재곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • The Cretaceous granite, andesite and sedimentary rocks are widely distributed in the northern Pusan area. The present study investigates mineralogical and geochemical charateristics of residual and cultivated soils derived from these rocks. The soils of granite area contain a large amount of quartz relative to clay minerals, whereas the soils of the andesite area contain more clay minerals than quartz. Clay minerals consist mainly of kaolin minerals illite hydroxy interlayered vermiculite interstratified mica/vermiculite and chlorite. Kaolin minerals are abundant in paddy soils while illite is abundant in less weathered soils. Si and K are major elements in the soils of granite area while Fe and Al in the soils of andesite area. In all the soils Ca, Mg and Na were generally depleted in comparison to those in parent rocks. Analysis data of trace element show that the enrichment pattern in soils depends on parent rock type with high oncentration of some elements over 100 ppm: Ba and Rb in granite area Zn, Bn, and V in andesite area, and Ba and V in sedimentary rock. In granite area, Rb and Th were greatly enriched in soil than in parent rocks. However, Cr, Ni and Sr commonly decrease, whereas Pb increases in all the soils. Exchangeable cation capacity(CEC) is relatively high in the soils of andesite are including abundant clay minerals. Collective evidences prove that the mineralogical and chemical compositions of soils are strongly dependent on the parent rock type. The mineralogy and chemistry of long cultivated soils are not significantly different from those of residual soils.

  • PDF

Effects of Anisotropic Consolidation on Strength of Soils (이방압밀이 흙의 강도에 미치는 영향)

  • 강병희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

A study on the improvements of geotechnical properties of in-situ soils by grouting

  • Chang, Muhsiung;Mao, Tze-wen;Huang, Ren-chung
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.527-546
    • /
    • 2016
  • This paper discusses improvements of compressibility, permeability, static and liquefaction strengths of in-situ soils by grouting. Both field testing and laboratory evaluation of the on-site samples were conducted. The improvement of soils was influenced by two main factors, i.e., the grout materials and the injection mechanisms introduced by the field grouting. On-site grout mapping revealed the major mechanism was fracturing accompanied with some permeation at deeper zones of sandy soils, where long-gel time suspension grout and solution grout were applied. The study found the compressibility and swelling potential of CL soils at a 0.5 m distance to grout hole could be reduced by 25% and 50%, respectively, due to the grouting. The effect on hydraulic conductivity of the CL soils appeared insignificant. The grouting slightly improved the cohesion of the CL soils by 10~15 kPa, and the friction angle appeared unaffected. The grouting had also improved the cohesion of the on-site SM soils by 10~90 kPa, while influences on the friction angle of soils were uncertain. Liquefaction resistances could be enhanced for the sandy soils within a 2~3 m extent to the grout hole. Average improvements of 40% and 20% on the liquefaction resistance were achievable for the sandy soils for earthquake magnitudes of 6 and ${\geq}7.5$, respectively, by the grouting.

Properties of Suppressive and Conducive Soils to Ginseng Root Rot (인삼 근부병 억제토양 및 유발토양의 특성)

  • Chung Young Ryun;Kim Hong Jin;Ohh Seung Hwan;Lee Il Ho
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.203-207
    • /
    • 1983
  • Biological, physical and chemical characteristics of suppressive and conducive soils to ginseng root rot were investigated. Population of antagonistic microorganisms to Fusarium solani was much higher in suppressive soils than in conducive soils, whereas the numbers of Fusarium species were smaller in suppressive soils. Mycelial growth and chlamydospore formation of Fusarium solani were inhibited in suppressive soils. In the water extract of suppressive soils, lysis of germination tube and macroconidia of F. solani was occurred by antagonistic microorganisms at 4 hours after treatment. There were no significant differences in physical and chemical characteristics between supressive soils and conducive soils to ginseng root rot, however, clay content of suppressive soils was a little higher than that of conductive soils.

  • PDF

Characterization of Phosphate-solubilizing Microorganisms in Upland and Plastic Film House Soils (밭과 시설재배지 토양의 인산가용화 미생물의 특성)

  • Suh, Jang-Sun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.348-353
    • /
    • 2008
  • With the aim to explore the possible role of phosphate-solubilizing bacteria in soil, we conducted a survey of phosphate-solubilizing microorganisms colonizing in upland and plastic film house soils. Soil EC, pH, organic matter, available phosphate, exchangeable cation such as potassium, calcium and magnesium, and total P of plastic film house soils were higher than those of upland soils. Phosphate-solubilizing bacteria population was higher in plastic film house soils than upland soils, but species of phosphate-solubilizing bacteria was more diverse in the upland soils than the plastic film house soils. There was significant positive correlation between phosphate solubilization and phosphate-solubilizing bacteria in soils. Bacillus, Cedecea, Brevibacillus, Paenibacillus, Pseudomonas, Serratia spp. were isolated from upland soils and Bacillus and Cellulomonas spp. were from plastic film house soils.