• Title/Summary/Keyword: Sol coating

Search Result 713, Processing Time 0.024 seconds

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys (마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발)

  • Lee, Dong Uk;Kim, Young Hoon;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Superhydrophilicity of Titania Hybrid Coating Film Imposed by UV Irradiation without Heat-treatment (저온 경화형 초친수성 티타니아 하이브리드 졸의 제조와 친수성 특성 평가에 관한 연구)

  • Kim, Won-Soo;Park, Won-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.121-131
    • /
    • 2007
  • A preparation process's conditions of aqueous sol which contains anatase-type nano titania particles with photocatalyic properties was established by using Yoldas process, so called, DCS(Destabilization of Colloidal Solution) process in this study. And crystal size change and phase transformation of titania particles in aqueous titania sol depending on reaction conditions was investigated by a light scattering method and XRD analysis of frozen dried powders, respectively. This sol with photo catalytic nano titania particles was used to the following hydrophilic hybrid coating film's fabrication and its properties was evaluated. Subsequently, for coating film using the above mentioned aqueous titania sol, non-aqueous titania sol was prepared without any chemical additives and its time stability according to aging time was investigate. By using the above mentioned aqueous titania sol and non-aqueous sol, a complex oxide coating sol for metal and ceramic substrate and a organic-inorganic hybrid coating sol for polymer substrate was prepared and it's hydrophilicity depending on UV irradiation conditions was evaluated. As a conclusions, the following results were obtained. (1)Aqueous titania sol The average particle size of titania in formed aqueous titania sol was distributed between 20$\sim$90nm range depending on reaction conditions. And the crystal phase of titania powders obtained by frozen drying method was changed from amorphous state to anatase and subsequently transformed to rutile crystal phase and it is attributed to concentration gradient in aqueous sol. (2)Non-aqueous titania sol Non-aqueous titania sol was prepared using methanol as a solvent and a little distilled water for hydrolysis and nitric acid as a catalyst were used. The obtained non-aqueous titania sol was stable at room temperature for 20 days. Additionally, non-aqueous titania sol with addition of chealating reagent such as acethylaceton and ethylene glycol prolonged the stability of sol by six months. (3)Complex sol and hybrid sol with super hydrophilicity The above mentioned aqueous titania sol as a main photocataylic component and non-aqueous titania sol as a binder for coating process was used to prepare a complex sol used for metal, ceramic and wood material substrate and also to prepare the organic-inorganic hybrid sol for polymer substrate such as polycarbonate and polyethylene, in which process APMS(3-Aminopropyltrimethoxysilane), GPTS(3-Glycidoxypropyl-trimethoxysilane) as a hydrophilic silane compound and HEMA(2-Hydroxyethyl methacrylate) as a forming network in hybrid coating film were used. The hybrid coating film such as prepared through this process showed a superhydrophilicity below 1$10^{\circ}$ depending on processing conditions and a pencil's hardness over 6 H.

  • PDF

Hydroxyapatite Coating on Ti Plate by a Dipping Method (침적법에 의한 수산화아파타이트 코팅 금속재의 기초적 연구)

  • Lee, Jun-Hui;Kim, Seok-Yeong;Kim, Yeong-Gon;Lee, In-Seop
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.217-222
    • /
    • 1997
  • Hydroxyapatite(HA)-coated metal composites were made by the dipping method. The specimen substrates were Ti plates with a thickness of 2 mm. The HA coating was carried out in HA-sol for 1 min by the dipping method. The concentration of HA-sol for the coating ranged from 3.28 to 9.99 wt%. Excellent coating was observed on Ti substrate dipped once in 9.99 wt% sol. Preparation of Ti plates by sandblasting provided the better environment for coating HA on Ti surface than non-treated surface. As the concentration of sol increased, the weight change and the coating thickness increased. Above 7 wt% sol, they increased sharply.

  • PDF

Preparation and Characterization of Alumina Thin Film by Sol-Gel Method (II); Synthesis of Alumina Sol for Coating and Preparation of Coating Films (졸겔법에 의한 알루미나 박막의 제조 및 특성(II);코팅용 알루미나 졸의 합성 및 박막 제조)

  • 이재호;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.911-919
    • /
    • 1994
  • As the study for preparation of single-layer anti-reflective coating on glass, the conditions of synthesis of sol for coating and of reproducible coating procedure were investigated. In case of water-based sol, coating was impossible because of poor wettability of sol. The Substitution of solvent with ethanol improved the wettability of sol on the glass surface, and optimum amount of ethanol for substitution was 70 vol%. Maximum specific surface area and total pore volume of water-based sol were 268.7$m^2$/g and 0.315 cc/g, but after substitution, those values increased to 404.1 $m^2$/g and 0.376 cc/g, respectively. The upper limit withdrawl speed of coating in order to get clean coated films without aggregations or stains was 7 cm/min. In case of addition of 0.1 mol HNO3 and substitution with 70 vol% ethanol and heat-treatment at 40$0^{\circ}C$ for 1 hour, thin film with thickness of 94 nm was obtained at withdrawl speed of 4 cm/min. The thickness of thin film was independent of drying time.

  • PDF

Characteristics on Cured Thin Film of Sol-Gel Materials Synthesized from CS/MTMS/ES (CS/MTMS/ES 졸겔코팅제 경화박막의 특성)

  • Myung, In-Hye;Kang, Dong-Pil;Ahn, Myeong-Sang;Na, Moon-Kyong;Kang, Young-Taec
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1930-1932
    • /
    • 2005
  • Colloidal Silica(CS)/methyltrimethoxy silane(MTMS) and CS/MTMS/epoxy silane(Es) sol solutions were prepared in variation with synthesizing parameters such as kinds of CS, kinds of silane and reaction time. In order to understand its physical and chemical properties, sol-gel coating films on glass were fabricated. In the case of CS/MTMS sol, the coating films had high contact angle and more enhanced flat surface than those in the case of CS/MTMS/ES sol. Also, the coating films obtained from single CS had a better flat surface than those obtained from mixed CS. In the case of thermal stability, thermal dissociation of CS/MTMS and CS/MTMS/ES sol-gel coating films did not occur up to $550^{\circ}C$ and $440^{\circ}C$ respectively. The thickness of coating films obtained from CS/MTMS sol increased than those of CS/MTMS/ES sol. In addition, the coating films obtained from single CS were more thicker than those obtained from mixed CS.

  • PDF

Hydroxyapatite+TiO2 Composite Sol Coating on Cp-Ti (Cp-Ti 표면의 Hydroxyapatite+TiO2 복합 Sol 코팅에 관한 연구)

  • Kim, Yun-Jong;Kim, Taik-Nam;Lee, Sung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.444-447
    • /
    • 2005
  • In this study, $Hydroxyapatite+TiO_2(HAp+TiO_2)$ composite sol coatings on Cp-Ti substrates were deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating, the samples were micropolished and divided into three sets. The first set was coated with hydroxyapatite (HAp) directly on Cp-Ti. The second set was first coated with intermediate titania layer and then coated with HAp. The third set samples were coated with $HAp+TiO_2$ (50:50) composite sol. Each samples were predried at $200^{\circ}C$, and heat treated at $600^{\circ}C$. The formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The NaOH treated samples showed the presence of rutile crystal. The SEM studies revealed surface morphologies of each samples. $HAp+TiO_2$ composite sol coating layer was found to be smooth. The bonding strength of each samples were calculated using pull out tests. The bonding strength of the $HAp+TiO_2$ composite sol coating on substrate was 29.35MPa.

Preparation and Characterization of Alumina Thin Film by Sol-Gel Method (III) Preparation of Anti-Reflective Coating Glass (졸겔법에 의한 알루미나 박막의 제조 및 특성 (III) 저반사 코팅유리의 제조)

  • 이재호;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.57-62
    • /
    • 1995
  • The coating condition of reproducible anti-reflective coating film and the light transmittance characteristics of the prepared anti-reflective coating glass were investigated as a study for the preparation of single-layer anti-reflective coating glasss. In case of coating with the sol in which the solvent was substituted with the ethanol with the addition of 0.1 mol HNO3, the coated glass showed the minimum value of the refractive index of 1.464, light transmittance of 94.2% at 550nm standard wavelength which is 3.2% higher than that of the parent glass, and the reflectance in the entire wave range of visible light. The refractive index represented its minimum at the sol concentration of 1.0 mol per 100mols of water and the higher the sol concentration, the higher the refractive index, resulting in the decrease of the light transmitance. The production condition of the reproducible anti-reflective coating on glass with the maximum transmittance of 94.2% was 4cm/min of withdrawal speed, 40$0^{\circ}C$ and 1 hour of heat treatment temperature and time, resulting in the film thickness of 94nm.

  • PDF

Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane (콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성)

  • Na, Moon-Kyong;Ahn, Myeong-Sang;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

Additive Coating of BaTiO3 Powder using Sol Coating Method II - Additive Coating Process using BaTiO3 Sol Added by Mg, Ca, Mn (졸 코팅 법을 이용한 BaTiO3 분체의 첨가제 코팅 II - Mg, Ca, Mn 이 첨가된 BaTiO3 졸을 이용한 첨가제 코팅 공정)

  • 신효순
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.960-966
    • /
    • 2004
  • On the bases of the results from "Additive Coating of BaTiO$_3$ Powder using Sol Coating Method I", experimental condition was defined. Representative additives for BaTiO$_3$, that is to say, Mg, Ca and Mn were experimented. The sources of the metal ion were used by organometal complex. As added it, the stability of BaTiO$_3$ sol was evaluated. Mg and Ca were stable, however, The solubility limit of Mn-ATH was 0.05 mol ratio in Mn-ATH/sol. The solubility limit of Mg ion in BaTiO$_3$ was lower than 2 mol%. From the x Ray diffraction patterns, lattice parameters were different with temperature and additives, because the solubility of metal ion was varied in BaTiO$_3$. The dielectric constant of BaTiO$_3$ powders which coated with the 1.5 mol% Mg and calcined at 1200$^{\circ}C$ was increased with 20%.