• Title/Summary/Keyword: Solar thermal energy

Search Result 1,230, Processing Time 0.027 seconds

A Characteristic Analysis on the Thermal Performance of the Dish Type Solar Concentrating System (Dish형 태양열 집광시스템 실증연구를 위한 집열성능 특성 분석)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Yoon, Hwan-Ki;Yoo, Seong-Yeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The dish type solar thermal concentrating system can collect the solar energy above $800^{\circ}C$. It has a concentration ratio of 800 and total reflector area of $49m^2$. To operate solar receivers at high temperature, the optimum aperture size is obtained from a comparison between maximizing absorbed energy and minimizing thermal losses. The system efficiency is defined as the absorbed energy by working fluid in receiver divided by the energy coming from the concentrator. We find that system efficiency is stable in case of flow rate of above 6lpm. The system efficiency are 64.9% and 65.7% in flow rate of 6lpm and 8lpm, respectively. The thermal performance showed that the maximum efficiency and the factor of thermal loss in flow rate of 8lpm are 68% and 0.0508.

Solar Thermal Deployment During the 2nd Basic Renewable Period - The Prospect of Million Solar Roof Program : 2003-2012 in Korea - (제2차 신재생 기본계획과 태양열 보급목표 - 태양열 100만 호 달성 과연 가능한가 -)

  • Kim, Jong-Sun;Park, Geun-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.168-171
    • /
    • 2006
  • The Korean Solar Thermal Industry hopes to realize 1 Million Solar Thermal Roofs. According to the 2nd Renewable Basic Plan : 2003-2012 the Government showed a very aggressive Solar Thermal Deployment Plan including Solar Thermal Apartment Housings Program. Owing to the Vision Statement such as Million Solar Thermal Roofs Program Korean Solar thermal Industry also can bring another shinny days Especially the more solar thermal applications such as to the Apartment Housings and Green Villages could bring a sustainable Solar Society Korea The RPA Program by the 9 Major Non-Private Energy Corporal ions and the RPS Program for the Solar Thermal Energy shall be another useful policy for the realization of Million Solar Korea era.

  • PDF

Economic Assessment of Solar Thermal Power System (태양열 발전시스템 경제성 분석)

  • Kim, Jin-Soo;Kang, Yong-Heack;Kim, Jong-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.25-29
    • /
    • 2008
  • Economic assessment of solar thermal power generation systems was carried out by calculating the levelized electricity cost. Four different commercial (or near commercial) solar thermal power systems (parabolic trough system, power tower system with saturated steam, power tower system with molten salts, and dish-stilting system) were considered for assessment. The assessment also included sensitivity analysis covering the effects of system capacity, direct normal insolation, and the system efficiency.

  • PDF

A Study on the Thermal Performance of Solar Concentrating Cooker (집광형 태양열 조리기의 집열성능 평가 연구)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Yoon, Hwan-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • To evaluate performance of concentrating solar cookers, we have designed and constructed parabolic solar cooker. Tests are carried out to define the performance characteristic of concentrating cookers under the ambient conditions. Performance and test of solar cooker were followed the international standard procedure that was proposed at the Third World Conference on solar cooking Stagnation temperature and water heating test are carried out to determine the maximum temperature attained by cooker and evaluate the thermal performance of the cooker, respectively.

Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System (Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션)

  • KUMAR, ANIL;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

Analysis of Maximum Solar Radiation on Inclined Surfaces for the Installation of Solar Thermal Systems in Korea Using the Optimum Installation Angle (국내 태양열시스템 설치를 위한 시스템 최적 설치각 산출을 통한 최대 경사면일사량 분석)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • The amount of incident rays over inclination according to direction has been widely utilized as important data m installing solar thermal systems. To optimize the incident solar radiation, the slope, that is the angle between the plane surface in question and the horizontal, and the solar azimuth angles are needed for these solar thermal systems. This is because the performance of the solar thermal systems in much affected by angle and direction of incident rays. Recognizing that factors mentioned above are of importance, actual experiment on the moving route of the sun have been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. After all, the standard for designing highly optimized solar thermal systems will be provided for designers and employees working in the solar collector related industries.

A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector (Facade 일체형 태양열 집열기를 갖는 태양열/지열 하이브리드 시스템의 태양열 집열시스템 작동특성 연구)

  • Baek, Nam-Choon;Lee, Jin-Kook;Yu, Chang-Kyun;Yoon, Eung-Sang;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.69-76
    • /
    • 2010
  • In this study, the solar thermal and geo-source heat pump(GSHP) hybrid system for heating and cooling of Zero Energy Solar House(ZESH) was analyzed by experiment. The GSHP in this hybrid system works like as aback-up device for solar thermal system. This hybrid system was designed and installed for Zero Energy Solar House (KIER ZeSH) in Korea Institute of Energy Research. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH. The analysis was conducted as followings ; - the thermal performance of facade integrated solar collector - the on/off characteristics of solar system and GSHP - the contribution of solar thermal system. - the performance of solar thermal and ground source heat pump system respectively. - the meet of thermal load (space and water heating load). This experimental study could be useful for the optimization of this system as well as its application in house. This hybrid system could be commercialized for the green home if it is developed to a package type.

Thermal Characteristics of Domestic Solar Collector for Low-Temperature Applications (국내 저온용 집열기의 열성능 특성)

  • Kim, Jeong-Bae;Rhie, Soon-Myeong;Yoon, Eung-Sang;Lee, Jin-Kook;Joo, Moon-Chang;Lee, Dong-Won;Kwak, Hee-Youl;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2007
  • This study shows the results on thermal performance test with domestic solar collector for low-temperature applications using KS, then reveals the efficiency difference between KS and EN standard. Using the test results, this study Presents the status of thermal performance with domestic solar collector including flat-plate, single evacuated, and double evacuated (with mirror or U-tube) solar collector.

A Study on the Optimum Application Method of Solar Thermal System to reduce Thermal Load and Carbon Emission in Apartment Building (공동주택의 열부하 및 탄소배출량 저감을 위한 태양열시스템의 최적 적용 방안 연구)

  • Yoon, Jong-Ho;Sim, Se-Ra;Shin, U-Cheul;Baek, Nam-Chun;Kwak, Hee-Yul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.135-142
    • /
    • 2011
  • Architectural market in the world is trying to develop Zero Carbon Buildng that doesn"t use fossil fuel. Residential building that thermal load such as heating and domestic hot water is over 70% in energy consumption is easy to make Zero Carbon Building compared with office building that is mainly electric load. So, As a preliminary for analyzing the effect of Solar thermal system in the building, an annual energy consumption of residential building and total heat loads are calculated. Based on this result, three alternatives of solar thermal system for hot water and heating are applied in the building while installation area is increasing. Solar thermal system is applied on balcony and roof of apartment building as the way to reduce thermal load. In the first case that solar thermal system for hot water is applied on the balcony, optimum installation area is $56m^2$. And you could install $40m^2$ of this system in the roof that angle is $30^{\circ}$. In the second case of solar thermal system for heating and hot water, you can install $40m^2$ on the roof. As a result of economic evaluation, the most economical application method is to install $40m^2$ of solar thermal system for only hot water on the roof of the building. At that time, you can payback the initial investing cost within 10 years. And carbon emission of this method can be reduced until about 4 ton per year.

Demonstration study on Desalination System using Solar energy (태양에너지 해수담수화시스템 실증)

  • Kim, Jeong-Bae;Joo, Hong-Jin;Yoon, Eung-Sang;Joo, Moon-Chang;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.27-33
    • /
    • 2007
  • In this research, to develop the practical application system of fresh water generation system with plate-type fresh water generator using low pressure evaporation method is the main object, and to do that, this study used the evacuated solar collector with operating range of about $50-85^{\circ}C$ as thermal energy source and solar photovoltaic as electric energy source. To achieve that object, this study set up the demo-plant, then estimated and analyzed the usefulness, the safety, and the reliability through pre-tests during short time ahead of the long-time operation. This study showed that the pumps, which are including sea water supply, ejector, hot water supply, and fresh water pumps, were operated one after another. And, the fresh water yield was closely related with the solar irradiance and lower supply temperature of hot water was revealed more reasonable for the solar energy desalination system. That is due to the insufficient area than the solar collector area being required that was estimated through the performance tests of the fresh water generator.