• Title/Summary/Keyword: Soldering

Search Result 390, Processing Time 0.027 seconds

A soldering station controller for two types heater (이종의 인두기 히터를 제어하는 솔더링 스테이션)

  • Oh, Kab-suk
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • This paper introduced a design method of soldering station that can control two types of soldering iron heater. At design time, to distinguish two types of soldering iron heater the voltage divider rule has been applied, and the distinguished resistor is inserted to handler of soldering iron to prevent misuse by users. And an algorithm to design a PID controllers is proposed. The proposed controllers parameter which can be easily realized, and are designed by using the input output data from systems, and have outstanding ability making the output response of nonlinear systems similar to the desired one. Temperature control experiments were performed to verify the ability of the suggested controller. As a result, suggested PID controller followed the desired ones, and one soldering station can control the various type of soldering irons in real time.

A comparative study on the tensile bonding strength of gold alloy solder joints by dental soldering method (치과용 납착 방법에 따른 금합금 납착 연결부의 인장 결합강도 비교 연구)

  • Cho, Mi-Hyang;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • In this study, to provide the fundamental data on stable connection method for successful implants prosthesis, We fabricated the solder joint of gold alloy bar specimens by gas flame soldering method and laser welding and soldering method. It compared and studied the tensile strength of two soldering method by universal testing machine. The results using universal testing machine were as follow : The mean of tensile strength of solder joint bar in gas flame soldering method specimens was 363.89 $\pm$17.62 MPa, and the mean strength of laser welding and soldering method was 125.91 $\pm$ 19.66 MPa, so gas flame soldering method was better than laser welding and soldering method and the finding better way to improve tensile strength is needed in laser welding method. On weak loading condition and the part which is needed an accuracy, laser welding method is more effective and on long-span prosthesis and frequent chewing loading part, laser welding technique is recommended first and applying additional gas flame soldering technique would be better for making much more successful prosthesis.

  • PDF

A MEASUREMENT OF DISPLACEMENTS OF CAST FRAMEWORK BY TORCH SOLDERING AND ELECTRIC SOLDERING TECHNIQUES (화염 납착법과 전기 납착법에 의한 금합금 주조체의 변위 양상에 관한 계측학적 연구)

  • Jeon, Sang-Won;Lim, Jang-Seop;Jeong, Chang-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.791-799
    • /
    • 1999
  • The purpose of this study was to investigate the displacements of cast framework by torch soldering and electric soldering techniques. Specimen had two cylinders and connecting bar that had sectioned with 0.3mm gap at mid point. 10 of total specimens were divided into two groups. In torch soldered group, soldering investment block was made and conventional torch solder-ing procedure was carried out. In electric soldered group, electric soldering was carried out on the master cast without soldering investment block by using electric soldering machine(Dentapunkt DP 7, Kulzer, Germany) After soldering procedure, three dimensional coordinates of two centroids of each cylinder were measured by three dimensional coordinate measuring machine. The intercentroidal displacement and global displacement were calculated and then, these values were compared and evaluated. The results were obtained as follows: 1. Intercentroidal distances of specimens decreased after both soldering procedures, and the decrease in intercentroidal distance was greater for torch soldered group than for electric soldered group 2. Global displacements of torch soldered group were greater than those of electric soldered group.

  • PDF

Comparisons Fitness in Implant Abutment between Gas Soldering and Laser Welding

  • Cho, Mi-Hyang;Nam, Shin-Eun
    • International Journal of Clinical Preventive Dentistry
    • /
    • v.14 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • Objective: Osseointegration is essential process for successful implants and effects to implant in long term, therefore, passive fitness of good prosthesis is necessary. To make a good prosthesis, at first it should be done a sectioned casting and then joined method of sectioned casting body is recommended. Methods: In this study, to provide the fundamental data on stable connection method for successful implants, the author tested fitness of casting body, and compared difference between gas soldering technique and laser welding technique. Results: In fitness test of 2 abutment (test A, C), gas soldering group's fitness in the opposite part of connection was worse than laser welding group. In fitness test of 3 abutment (test B, D), gap distance was increased both in gas soldering technique and laser welding technique. Gap distance at the connecting part and the opposite part of the abutment in gas soldering technique was worse than laser welding technique and the more additional abutment, the worse gap distance in gas soldering technique. In fitness test of 3 abutment (test B, D), there's little variation in No. 2 abutment when connecting soldering process was done and there's little influence on already soldered connection part when the additional soldering connection was done. Conclusion: On weak loading condition and the part which is needed an accuracy, laser welding technique is more effective and on long-span prosthesis and frequent chewing loading part, laser welding technique is recommended first and applying additional gas soldering technique would be better for making much more successful prosthesis.

Laser Micro Soldering and Soldering Factors (레이저 마이크로 솔더링과 솔더링 인자)

  • Hwang, Seung Jun;Hwang, Sung Vin;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper, the principles, characteristics and recent studies of the laser micro soldering are reviewed. The factors which influence laser micro welding and soldering are also included. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled laser beam. In recent electronics industry, the demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro-joint. In laser soldering, there are several important factors like laser absorption, laser power, laser scanning speed, and etc, which affect laser solderability. The laser absorption ratio depends on materials, and each material has different absorption or reflectivity for the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance, and these are also reviewed.

Laser Micro-Joining and Soldering (레이저 마이크로 접합 및 솔더링)

  • Hwang, Seung Jun;Kang, Hye Jun;Kim, Jeng O;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • In this paper, the principles, types and characteristics of the laser and laser soldering are introduced. Laser soldering methods for electronics, metals, semiconductors are also presented. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled beam. Demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro joint. Laser absorption ratio depends on materials, and each material has different absorption or reflectivity of the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance. In this paper, the performance of Nd:YAG laser soldering is compared to the hot blast reflow. Meanwhile, a diode laser gives different wavelength and smaller parts with high performance, but it has various reliability issues such as heat loss, high power, and cooling technology. These issues need to be improved in the future, and further studies for laser micro-joining and soldering are required.

The Physical characteristic of Crystalline Solar Cell by Soldering Type (Soldering 방식에 따른 결정질 셀의 물리적 특성변화)

  • Shin, Jun-Oh;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.72-72
    • /
    • 2010
  • The PV module company use variable process step and type. Especially soldering process is important, because crystalline cell can be bow by beating temperature. Most PV module company use hot air soldering type in the tabbing & string process. Although hot air type is used widely but this type is bound to influence on cell damage. So recently new way is introducing like a high current way. In this paper, we compare with characteristics of each soldering type and then conform a method to minimize solar cell deformation. Actually solar cell deformation show many difference by fix position and cooling time after soldering step.

  • PDF

Characterization of Soldering Property on Heating Condition by Infrared Lamp Soldering Process for C-Si Photovoltaic Modules (적외선 램프 가열방식을 이용한 태양전지 셀의 솔더링 공정 및 열처리 조건 별 특성 평가)

  • Son, Hyoun Jin;Lee, Jung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.59-63
    • /
    • 2016
  • A key point of a soldering process for photovoltaic (PV) modules is to increase an adhesive strength leading a low resistivity between ribbon and cell. In this study, we intended to optimize a heating condition for the soldering process and characterize the soldered joint via physical and chemical analysis methods. For the purpose, the heating conditions were adjusted by IR lamp power, heating time and hot plate temperature for preheating a cell. Since then the peel test for the ribbon and cell was conducted, consequently the peel strength data shows that there is some optimum soldering condition. In here, we observed that the peel strength was modified by increasing the heating condition. Such a soldering property is affected by a various factors of which the soldered joint, flux and bus bar of the cell are changed on the heating condition. Therefore, we tried to reveal causes determining the soldering property through analyzing the soldered interface.

Effect of soldering techniques and gapdistance on tensile strength of soldered Ni-Cr alloy joint

  • Lee, Sang-Yeob;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.117-121
    • /
    • 2010
  • PURPOSE. The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. MATERIALS AND METHODS. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. RESULTS. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P < .05). CONCLUSION. There was no significant difference in ultimate tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

Fluxless Plasma Soldering with Different Thickness of UBM Layers on Si-Wafer (Si 웨이퍼의 UBM층 도금두께에 따른 무플럭스 플라즈마 솔더링)

  • 문준권;강경인;이재식;정재필;주운홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.373-378
    • /
    • 2003
  • With increasing environmental concerns, application of lead-free solder and fluxless soldering process have been taken attention from the electronic packaging industry. Plasma treatment is one of the soldering methods for the fluxless soldering, and it can prevent environmental pollution cased by flux. On this study fluxless soldering process under $Ar-H_2$plasma using lead free solders such as Sn-3.5 wt%Ag, Sn-3.5 wt%Ag-0.7 wt%Cu and Sn-37%Pb for a reference was investigated. As the plasma reflow has higher soldering temperature than normal air reflow, the effects of UBM(Under Bump Metallization) thickness on the interfacial reaction and bonding strength can be critical. Experimental results showed in case of the thin UBM, Au(20 nm)/Cu(0.3 $\mu\textrm{m}$)/Ni(0.4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), shear strength of the soldered joint was relatively low as 19-27㎫, and it's caused by the crack observed along the bonded interface. The crack was believed to be produced by the exhaustion of the thin UBM-layer due to the excessive reaction with solder under plasma. However, in case of thick UBM, Au(20 nm)/Cu(4 $\mu\textrm{m}$)/Ni(4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), the bonded interface was sound without any crack and shear strength gives 32∼42㎫. Thus, by increasing UBM thickness in this study the shear strength can be improved to 50∼70%. Fluxed reflow soldering under hot air was also carried out for a reference, and the shear strength was 48∼52㎫. Consequently the fluxless soldering with plasma showed around 65∼80% as those of fluxed air reflow, and the possibility of the $Ar-H_2$ plasma reflow was evaluated.