• Title/Summary/Keyword: Solid Rocket Nozzle

Search Result 99, Processing Time 0.024 seconds

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

Enhancement of Performance for Solid Composite Propellant Motor using Teflon Nozzle (Teflon 노즐을 이용한 복합추진제 모터의 추력 향상)

  • Hong Gi-Cheol;Lee Hoon-Hee;Seo Charm;Goo Yong-Je;Sim Ju-Hyun;Kim Sang-Woo;Lim Sung-Bin;Bang Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.495-499
    • /
    • 2005
  • The INHA Rocket Research Institute changed the Ceramic nozzle material of their developed Solid Composite Propellant Motor with Teflon nozzle material. Static firings of the new Solid Rocket Motors was conducted on Thurst Tester to validate the increase in performance. The new enhanced Solid Roket Motor increased the total impulse by 18.3 percent while improving its reliability. The new process of manufacture reduced the time to produce a nozzle.

  • PDF

Analysis on Thermochemical Erosion Properties for Thermal Insulation Materials of Graphite Nozzle Throat (흑연 노즐목 내열재의 열화학적 침식 특성 분석)

  • Kim, Young-in;Lee, Soo-yong
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • In the solid rocket motor (SRM), a thrust of rocket is generated by a nozzle so it is very important device. The nozzle of SRM is a condition of high temperature and high pressure so occurs the erosion by combustion gas. The liquid rocket propulsion systems (LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. This paper deal with the development of the oxy-acetylene torch tester and investigate the thermochemical erosion properties for the thermal insulation materials of the graphite rocket nozzle throat through the experiment. The results of experiments are compared with the results of Theoretical model and identify the key factors affecting of erosion. The results is in good agreement with the experimental data.

Modeling of 2D/3D Solid Rocket Combustion Using Preconditioning Method (예조건 알고리즘을 적용시킨 고체로켓의 2D/3D 연소해석)

  • Lee, S.N.;Baek, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.547-550
    • /
    • 2008
  • A solid rocket motor has quite complex physical condition such exothermal chemical reaction in subsonic area and supersonic ex pansion in a converging-diverging nozzle. To introduce a simulation tool for compressible flow in supersonic range as well as incompressible chemical reaction zone in a whole rocket nozzle is a essential demand. Since the flow vary subsonic to super sonic, the convergence in computation becomes very low and unstable in a whole domain of rocket motor. This paper reports the 2-D Axisymmetric and simple 3-D solid propellant combustion and flow of gases in rocket motor by using a precondi tioning, shear stress turbulence modeling, AUSM(p). To simulate the simplified combustion process, Double base solid propellant is used to calculate reaction of solid propellant.

  • PDF

Research about the cooling of a small size rocket nozzle (소형로켓 노즐의 냉각에 관한 연구)

  • Go, Tae-Sig;Shim, Jin-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.365-369
    • /
    • 2007
  • The solid rocket interacts circumscriptively in terms of is many more than liquid rocket. It is uncontrollable than liquid rocket because all part of combustion is decided such as Mixture ratio of propellant, burning time and area. However, production cost is cheap and because authoritativeness security can be easy and enlarge the early speed that follow thrust-to-weight ratio, it is used comprehensively by small size rocket. Considered about nozzle cooling to control phenomenon that burn by thermal conduction in interior wall of nozzle that follow in thrust increase of solid rocket and erosion phenomenon by combustion gas of high speed.

  • PDF

The Design of The Bell-Shaped Nozzle for The Maximum Thrust (추력 극대화를 위한 벨형 노즐 설계)

  • Kim Min-Chul;Park Soon-Ho;Lee Gui-Hwan;Lee Choong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.487-490
    • /
    • 2005
  • The thrust Control in Solid Propellant Rocket is incomparably limited than that in Liquid Propellant Rocket. Because it is fixed that section to relate a combustion, that is a natural result. The control of a thrust directions in a Solid Propellant Rocket is not efficient for the purpose of a Solid Propellant Rocket. But it is a problem to solve that a weight on board should increase through the maximization of the thrust in a Solid Propellant Rocket.

  • PDF

A Study on Performance Change of Solid Rocket Motor for Variation of Nozzle Ambient Pressure (노즐 외기 압력 변화에 따른 고체추진기관 성능 변화 연구)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.219-222
    • /
    • 2007
  • This research on 2nd stage solid rocket motor of KSLV-I for performance change was carried out. Solid rocket motor shall ignite on altitude of 300km. Solid Rocket Motor performed Static Firing Test and High Altitude Test for motor performance. A study made an analysis of specific impulse variation for nozzle ambient pressure.

  • PDF

The Studies on the Design of a Subscale Solid Propellant Rocket Motor (축소 모사형 고체 추진기관 설계에 관한 연구)

  • Kim, Hyung-Won;Oh, Jong-Yun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.215-218
    • /
    • 2009
  • A design of a subscale solid propellant rocket motor was conducted to do the similitude experiments for the large scale rocket motor. One of the main factor to subscale was the mach number of the solid propellant flume through a nozzle exit The analysis of the flume flow was done to obtain the mach number for the large and subscale rocket motor. The flume shapes on the non dimensional axises by the nozzle exit diameter was matched each other. The propellant grain of a subscale solid rocket motor was designed by the profile of pressure vs time obtained by the mach number of the flume shape. Some analyses of the theoretical solution were compared with the results of the ground static test.

  • PDF

Stability Evaluation of One-Dimensional Flow in Solid Rocket Motors Based on Computational Fluid Dynamics

  • Kato, Takashi;Hanzawa, Masahisa;Morita, Takakazu;Shimada, Tbru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.565-572
    • /
    • 2004
  • Numerical stability analysis of one-dimensional axial flow in solid rocket motors is performed based on the Euler equation coupled with an unsteady combustion equation of solid propellant. In order to check the numerical scheme, behavior of a standing wave in a closed tube is examined. A standing wave in solid rocket motor decays or grows depending on the total effect of propellant combustion, nozzle flow, and so on. The stability boundary of the fundamental mode standing wave is determined by changing one of the combustion parameters. In addition growth rates of the wave are calculated numerically in relatively low Mach number flow region for the motors with different port and nozzle throat diameters. The results obtained here agree well with the approximate solution. The same scheme is applied to a motor with shorter length and L*-instability is observed.

  • PDF

Modeling of 2D Axisymmetric Reacting Flow in Solid Rocket Motor with Preconditioning

  • Lee, S.N.;Baek, S.W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.260-265
    • /
    • 2008
  • A numerical scheme for solid propellant rocket has been studied using preconditioning method to research unsteady combustion processes for the double-base propellant with a converging-diverging nozzle. The Navier-Stokes equation is solved by dualtime stepping method with finite volume method. The turbulence model uses a shear stress transport modeling. The species equation follows up the method of Xinping WI, Mridul Kumar and Kenneth K. Kuo. A preconditioned algorithm is applied to solve incompressible regime inside the combustor and compressible flow at nozzle. Mass flux was evaluated using modified advective upwind splitting method. The simulated result the comparison a fully coupled implicit method and a semi implicit method in terms of accuracy and efficiency. This report shows the result of solid rocket propellant combustion.

  • PDF