• Title/Summary/Keyword: Solid-state method

Search Result 1,015, Processing Time 0.03 seconds

Sampling Methods for Quantification of Solid-state Phases in Powder Samples with Solid-state NMR Spectroscopy

  • Han, Oc-Hee;Kim, Sun-Ha;Ko, Tae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1077-1079
    • /
    • 2009
  • To minimize the variance in the quantification of solid-state phases in powder samples, gently placing polycrystalline samples one next to another directly in a sample holder is better than trying to mix them homogeneously prior to transferring to a sample holder. However, the solid-state cross polarization-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy results demonstrated that it is essential in this sampling method to place all the samples in the location of consistent signal sensitivity. The same sampling method may be employed in other spectroscopic quantification techniques of solid-state phases if the method to limit the sample to the location with uniform signal sensitivity in the sample holder is adapted to each technique.

Finite Element Analysis and Experiment of Combined Extrusion in Semi-Solid State (반용융 복합압출 제품의 성형실험 및 유한요소해석)

  • 최재찬;박준홍;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.313-318
    • /
    • 1999
  • Many products related to automobile and airplane industry have been manufactured by semi-solid forging. In this paper finite element analysis of product by combined extrusion in semi-solid state was performed and its experimental verification using A356 was conducted. distribution of solid fraction was analyzed and compared with the experimental microstructure in the product. In addition, distribution of temperature in the product was analysed by finite element method.

  • PDF

Solid Dispersion as a Strategy to Improve Drug Bioavailability (고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략)

  • Park, Jun-Hyung;Chun, Myung-Kwan;Cho, Hoon;Choi, Hoo-Kyun
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

Yield and Compression Behavior of Semi-Solid Material by Upper-Bound Method

  • Park, Joon-Hong;Kim, Chul;Kim, Byung-Min;Park, Jae-Chan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • The compression behavior of semi-solid materials is studied from a viewpoint of yield criteria and analysis methods. To describe the behavior of materials in semi-solid state, several theories have been proposed by extending the concept of plasticity of porous compressible materials. In the present work, the upper-bound method and the finite element method are used to model the simple compression process using yield criteria of Kuhn and Doraivelu. Segregation between solid and liquid which cause defect of product is analysed for Sn-15%Pb and A356 alloys during deformation in semi-solid state. The comparison of analyses is made according to yield criteria and analysis methods. In addition, the analysis result for semi-solid dendritic Sn-15%Pb alloy is compared with the experimental result of Charreyron et al..

  • PDF

Chemical Shift and Quadrupolar Interactions in Solids

  • Kim Jin-Eun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.1-37
    • /
    • 2006
  • General expressions for solid state NMR lines are described for transitions under static, magic angle spinning, and variable angle spinning conditions in the case where the principal axis system for the anisotropic chemical shift tensor is noncoincident with that of the quadrupole coupling tensor. It is demonstrated that solid state NMR powder pattern simulation program VMAS based on the conventional grid point method of integrating over the Euler angle space is fast enough in comparison with the POWDER simulation package and Gauss-point method.

  • PDF

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.

Fatigue Life Estimation of Solid-state Drive due to the Effect of Dummy Solder Ball under Forced Vibration (Solid-state drive 강제진동시 dummy solder ball 효과에 의한 피로수명 예측)

  • Lee, Juyub;Jang, Gunhee;Jang, Jinwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.978-983
    • /
    • 2014
  • This research proposes a method to estimate the fatigue life of solid-state drive(SSD) due to the effect of dummy solder ball under forced vibration. Mechanical jig is developed to describe the SSD in laptop computer. The jig with SSD is mounted on a shaker, and excited by a sinusoidal sweep vibration within the narrow frequency band around the first resonant frequency until the SSD fails. A finite element model of SSD is also developed to simulate the forced vibration. It shows that the solder joints at the corners of controller package are most vulnerable components and that placing dummy solder balls at those area is effective method to increase fatigue life of SSD.

  • PDF

Inter Landau Level Optical Absorption in Graphene Under Ultra-high Magnetic Field

  • Saito, H.;Nakamura, D.;Takeyama, S.;Kim, Yong-Min;An, K.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.360-360
    • /
    • 2012
  • Graphene shows diverse novel physical properties arising from its peculiar electronic states, so called Dirac electrons. Especially, effect of magnetic field is very unique, exhibiting exotic Landau level (LL) splitting. LLs are substantially modified by spins of Dirac electrons and pseudo-spins. The degeneracy of LLs is lifted to show splitting by electron-electron interaction and by the Zeeman effect. We investigated the magneto-optical absorption of graphene subjected to ultra-high magnetic field. Samples were prepared by the CVD method deposited on GaAs and Quart substrate. We have confirmed existence of graphene on each substrate by the micro-Raman spectroscopy. Next, we conducted magneto-absorption measurements in magnetic field up to 120 T by the single-turn coil (STC) method. We could observe absorption peak at 65 T and 100 T, respectively, probably arising from the LL inter-band transitions.

  • PDF