• Title/Summary/Keyword: Soluble host

Search Result 65, Processing Time 0.026 seconds

Interactions between Water-Soluble Polyparacyclophanes and Drugs (I) -Design and Synthesis of Water-Soluble Polyparacyclophanes Containing Diphenyl Ether Skeletons- (수용성 폴리파라시클로판류와 약물과의 상호작용 (제1보) -디페닐에텔을 골격으로 하는 수용성 폴리파라시클로판류의 설계 및 합성-)

  • Chun, In-Koo;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.2
    • /
    • pp.89-97
    • /
    • 1988
  • A series of novel water-soluble paracyclophanes containing two diphenyl ether skeletons and two bridging aliphatic chains of various length were designed and prepared to develop artificial host compounds which might provide efficient hydrophobic field. They were 1,5,19,23-tetraaza-12,30-dioxa[5,1.5.1] paracyclophane (6), 1,6,20,25-tetraaza-13,32-dioxa[6.1.6.1]paracyclophane (7), 1,7,21,27-tetraaza-14,34-dioxa[7.1.7.1]paracyclophane (8) and 1,8,22,29-tetraaza-15,36-dioxa[8.1.8.1]paracyclophane (9). As the corresponding acyclic analogue, 4,4'-dimethylaminodiphenyl ether (11) was synthesized for the comparative study of further host-guest interaction.

  • PDF

Biological activities of the diethyl ether soluble toxin produced by Helminthosporium sativum (Helminthosporium sativum이 생성하는 D-toxin의 생물학적 활성)

  • Lee, Sang-Sun;Vick, Brady A.;Stack, Robert W.
    • The Korean Journal of Mycology
    • /
    • v.19 no.2
    • /
    • pp.128-135
    • /
    • 1991
  • Diethyl ether soluble toxin produced by H. sativum had the characteristics of helmin­thosporal as based on UV, GC-MS, and chemical analysis, but was not a helminthosporaI. It was speculated that it was a polymer of helminthosporal. It stimulated the productions of reducing sugar in the barly endosperm like gibberellic acid, but acted in the responses on the barley roots and coleoptiles like gibberellic acid. It seemed to be involved in Foliar and Root rot diseases with host specificity, based on the analysis of linear regression.

  • PDF

High molecular weight water-soluble chitosan acts as an accelerator of macrophages activation by recombinant interferon ${\gamma}$ via a process involving $_L$-arginine -dependent nitric oxide production

  • Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.71-81
    • /
    • 2000
  • High molecular weight water-insoluble chitosan alone has been previously shown to exhibit in vitro stimulatory effect on macrophages nitric oxide (NO) production. However, high molecular weight water-soluble chitosan (WSC) had no effect on NO production by itself. When WSC was used in combination with recombinant $interferon-{\gamma}\;(Rifn-{\gamma})$, there was a marked cooperative induction of NO synthesis in a dose-dependent manner. The optimal effect of WSC on NO synthesis was shown at 24 h after treatment with $rIFN-{\gamma}$. The increased production of NO from $rIFN-{\gamma}$ plus WSC-stimulated RAW 264.7 macrophages was decreased by the treatment with $N^G$ $monomethyl-_L-arginine$. The increase in NO synthesis was reflected, as an increased amounts of inducible NO synthase (iNOS) protein. Synergy between $rIFN-{\gamma}$ and WSC was mainly dependent on WSC-induced nuclear $factor-_KB$ activation. The present results indicate that WSC may provide various activities such as anti-microbial, anti-tumoral, and anti-viral. In addition, since NO has emerged as an important intracellular and intercellular regulatory molecule having functions as diverse as vasodilation, neural communication, cell growth regulation and host defense, it is tempting to hypothesize that this WSC is involved in the local control of the various fundamental processes such as cardiagra, cardiac infarction, impotence etc.

  • PDF

The study of new host materials for solution-processed green organic electrophosphorescence

  • Jung, Sung-Hyun;Lee, Ho-Jae;Kim, Young-Hoon;Kim, Hyung-Sun;Yu, Eun-Sun;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.454-457
    • /
    • 2008
  • We report the syntheses, photophysical properties and device performances of solution processible host material for green-phosphorescent OLEDs. The butterfly-shaped new host materials with nonconjugated linkage of carbazole and fluorene moieties have large triple energy band gap around 2.8 eV. All of the EL devices exhibited turn-on voltages in the range of 4.8-5.0 V. GH-4 exhibited the best performance with a maximum current efficiency and power efficiency of 21.1 cd/A and 7.9 lm/W.

  • PDF

Complement regulation: physiology and disease relevance

  • Cho, Heeyeon
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.7
    • /
    • pp.239-244
    • /
    • 2015
  • The complement system is part of the innate immune response and as such defends against invading pathogens, removes immune complexes and damaged self-cells, aids organ regeneration, confers neuroprotection, and engages with the adaptive immune response via T and B cells. Complement activation can either benefit or harm the host organism; thus, the complement system must maintain a balance between activation on foreign or modified self surfaces and inhibition on intact host cells. Complement regulators are essential for maintaining this balance and are classified as soluble regulators, such as factor H, and membrane-bound regulators. Defective complement regulators can damage the host cell and result in the accumulation of immunological debris. Moreover, defective regulators are associated with several autoimmune diseases such as atypical hemolytic uremic syndrome, dense deposit disease, age-related macular degeneration, and systemic lupus erythematosus. Therefore, understanding the molecular mechanisms by which the complement system is regulated is important for the development of novel therapies for complement-associated diseases.

Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry

  • Choct, M.;Dersjant-Li, Y.;McLeish, J.;Peisker, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1386-1398
    • /
    • 2010
  • Soybean contains a high concentration of carbohydrates that consist mainly of non-starch polysaccharides (NSP) and oligosaccharides. The NSP can be divided into insoluble NSP (mainly cellulose) and soluble NSP (composed mainly of pectic polymers, which are partially soluble in water). Monogastric animals do not have the enzymes to hydrolyze these carbohydrates, and thus their digestion occurs by means of bacterial fermentation. The fermentation of soybean carbohydrates produces short chain fatty acids that can be used as an energy source by animals. The utilization efficiency of the carbohydrates is related to the chemical structure, the level of inclusion in the diet, species and age of the animal. In poultry, soluble NSP can increase digesta viscosity, reduce the digestibility of nutrients and depress growth performance. In growing pigs, these effects, in particular the effect on gut viscosity, are often not so obvious. However, in weaning piglets, it is reported that soy oligosaccharides and soluble NSP can cause detrimental effects on intestinal health. In monogastrics, consideration must be given to the anti-nutritive effect of the NSP on nutrient digestion and absorption on one hand, as well as the potential benefits or detriments of intestinal fermentation products to the host. This mirrors the needs for i) increasing efficiency of utilization of fibrous materials in monogastrics, and ii) the maintenance and improvement of animal health in antibiotic-free production systems, on the other hand. For example, ethanol/water extraction removes the low molecular weight carbohydrate fractions, such as the oligosaccharides and part of the soluble pectins, leaving behind the insoluble fraction of the NSP, which is devoid of anti-nutritive activities. The resultant product is a high quality soy protein concentrate. This paper presents the composition and chemical structures of carbohydrates present in soybeans and discusses their nutritive and anti-nutritive effects on digestion and absorption of nutrients in pigs and poultry.

Study on the Chemical Polymerization of Pyrrole in the Presence of Cyclic Poly(oxyethylene)s (환형 폴리옥시에틸렌 존재하의 피롤의 화학적 중합에 관한 연구)

  • 차국찬;김진환;배진영
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.568-574
    • /
    • 2002
  • Inclusion compounds using cyclic poly(oxyethylene)s as host molecules have been used to polymerize pyrrole chemically in aqueous medium. This general synthetic strategy makes it possible to grow rigid aromatic polymers in aqueous medium by chemical oxidation method. It is an easy method to obtain rigid polymers in a very mild manner. Some threaded and water-soluble polypyrroles are obtained, and their characterization is performed by NMR, IR, UV, and MALDI-TOF MS measurements.

Cloning and overexpression of lysozyme from Spodoptera litura in prokaryotic system

  • Kim, Jong-Wan;Park, Soon-Ik;Yoe, Jee-Hyun;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Insect lysozymes are basic, cationic proteins synthesized in fat body and hemocytes in response to bacterial infections and depolymerize the bacterial cell wall. The c-type lysozyme of the insect Spodoptera litura (SLLyz) is a single polypeptide chain of 121 residues with four disulfide bridges and 17 rare codons and is approximately 15 kDa. The full-length SLLyz cDNA is 1039 bp long with a poly(A) tail, and contains an open reading frame of 426 bp long (including the termination codon), flanked by a 54 bp long 5' UTR and a 559 bp long 3' UTR. As a host for the production of high-level recombinant proteins, E. coli is used most commonly because of its low cost and short generation time. However, the soluble expression of heterologous proteins in E. coli is not trivial, especially for disulfide-bonded proteins. In order to prevent inclusion body formation, GST was selected as a fusion partner to enhance the solubility of recombinant protein, and fused to the amplified products encoding mature SLLyz. The expression vector pGEX-4T-1/rSLLyz was then transformed into E. coli BL21(DE3)pLysS for soluble expression of rSLLyz, and the soluble fusion protein was purified successfully. Inhibition zone assay demonstrated that rSLLyz showed antibacterial activity against B. megaterium. These results demonstrate that the GST fusion expression system in E. coli described in this study is efficient and inexpensive in producing a disulfide-bonded rSLLyz in soluble, active form, and suggest that the insect lysozyme is an interesting system for future structural and functional studies.

Chemical Composition of Main Cordyceps species in Korea

  • Hong, In-Pyo;Nam, Sung-Hee;Sung, Gyoo-Byung;Lee, Kwang-Gil;Cho, Soo-Muk;Seok, Soon-Ja;Hur, Hyeon;Lee, Min-Woong;Guo, Shun-Xing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • The caterpillar-shaped Chinese medicinal mushroom (DongChongXiaCao) looks like a worm in the winter and like a grass in the summer. The fruiting body has been regarded as popular folk or effective medicines used to treat human diseases such as asthma, bronchial and lung inflammation, and kidney disease. The fruiting bodies of Cordyceps militaris, C. pruinosa and Paecilomyces tenuipes that formed on the living silkworm (Bombyx mori) host were used in this examination. This study was carried out to investigate the soluble sugar, amino acid and fatty acid profiles in the fruiting-bodies. Soluble sugars such as glycerol, glucose, mannitol and sucrose were mainly found in the fruiting bodies of C. militaris, C. pruinosa and P. tenuipes. Total soluble sugar content was 29.23 mg/g in C. militaris, 8.61 mg/g in C. pruinosa and 24.00 mg/g 1in P. tenuipes on dry weight basis. Total free amino acid content was 14.09 mg/g 1in C. militaris, 34.60 mg/g in C. pruinosa and 17.09 mg/g in P. tenuipes. The content of oleic acid in fatty acids was above high more than 30% regardless of species.

Interactions between Water-Soluble Polyparacyclophanes and Drugs (II) -Interaction between Water-Soluble Polyparacyclophanes and Fluorescent Hydrophobic Naphthalene Derivatives in Aqueous Solution- (수용성 폴리파라시클로판류와 약물과의 상호작용(제 2보) -수용액중 수용성 폴리파라시클로판류와 형광 소수 나프탈렌 유도체류와의 상호 작용-)

  • Chun, In-Koo;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.3
    • /
    • pp.113-123
    • /
    • 1988
  • A series of water-soluble polyparacyclophanes bearing two diphenylmethane or two diphenyl ether skeletons were investigated to develop useful host compounds by using 1-anilinonaphthalene-6-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) as fluorescent hydrophobic substrates in aqueous solution. It was noteworthy that remarkable fluorescent enhancements and blue shifts of ANS and TNS were observed only in the presence of 1,6,20,25-tetraaza[6.1.6.1] paracyclophane (CPM 44) and 1,6,21,27-tetraaza [7.1.7.1] paracyclophane (CPM 55) for diphenylmethane skeleton, and 1,7,21,27-tetraaza-14,34-dioxa [7.1.7.1] paracyclophane (CPE 55) and 1,8,22,29-tetraaza-15,36-dioxa [8.1.8.1] paracyclophane (CPE 66) for diphenyl ether skeleton, comparing with ${\alpha}-\;and\;{\beta}-cyclodextrins$. However, their acyclic analogues such as 4,4'-dimethylaminodiphenylmethane and 4,4'-dimethylaminodiphenyl ether, and paracyclophanes whose cavities were smaller showed only small effects under the same conditions. These facts suggested that hosts and substrates were in an intimate contact which would not occur without larger structures, and thus that guest molecules were strongly incorporated in the hydrophobic cavities of these larger paracyclophanes. The effects of pH on the fluorescent intensity of ANS-CPM 44, ANS-CPM 55, ANS-CPE 55, ANS-CPE 66, TNS-CPM 44, TNS-CPM 55, TNS-CPE 55 and TNS-CPE 66 systems were not significant below pH 2.0, but their fluorescent intensities were markedly reduced with increasing ionic strength.

  • PDF