• Title/Summary/Keyword: Sound synthesis

Search Result 136, Processing Time 0.027 seconds

Theory of Acoustic Quanta and its Application on Sound Design (음향 양자 이론의 사운드 디자인적 응용)

  • Koo, Jahwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.420-426
    • /
    • 2018
  • Acoustic Quanta, which British Physicist Dennis Gabor created, is the theoretical background for granular synthesis and has influenced many computer music artists and sound designers. Acoustic Quanta is a very short sound burst, lasting only 1 to 100 ms. Granular synthesis is a sound synthesis technique which slices original sound into sound grains and re-combines them into a new acoustic event. Concept of sound grain is borrowed from the acoustic quanta. Granular Synthesis can make very unique sound, so that it can be useful in many ways, especially in sound design. This paper presents concept of acoustic quanta and granular synthesis. It then discusses making a synthesizer as an implementation of synchronous granular synthesis and its applications on sound design. As a result, the duration of acoustic quanta should range between 0.239 and 33.367 ms, in consideration of audible frequencies, which is different from the original concept of the acoustic quanta.

Spectral Modeling Synthesis of Haegeum using GPU (GPU를 이용한 해금의 스펙트럼 모델링)

  • Islam, Md Shohidul;Islam, Md Rashedul;Farid, Fahmid Al;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.5-8
    • /
    • 2014
  • This paper presents a parallel approach of formant synthesis method for haegeum on graphics processing units (GPU) using spectral modeling. Spectral modeling synthesis (SMS) is a technique that models time-varying spectra as a combination of sinusoids and a time-varying filtered noise component. A second-order digital resonator by the impulse-invariant transform (IIT) is applied to generate deterministic components and the results are band-pass filtered to adjust magnitude. The noise is calculated by first generating the sinusoids with formant synthesis, subtracting them from the original sound, and then removing some harmonics remained. The synthesized sounds are consequently by adding sinusoids, which are shown to be similar to the original Haegeum sounds. Furthermore, GPU accelerates the synthesis process enabling- real time music synthesis system development, supporting more sound effect, and multiple musical sound compositions.

  • PDF

A Study on the Spectrum Analysis for the Sound Synthesis of Piri (국악기 피리의 소리합성을 위한 음색분석 연구)

  • Kim, Hye-Jee;Yoon, Hye-Jung;Cho, Hyung-Je;Kim, Jun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.7
    • /
    • pp.801-807
    • /
    • 2006
  • This study analyzed the timbral characteristics of Pliri by basis step for the sound synthesis for Piri, Korean traditional musical Instrument. By analyzing this material, we can find out three characteristics about the study of the spectrum analysis for the sound synthesis of Piri. First, compared the timbral characteristics of Piri with Oboe through the spectrum analysis, Second, analyzed the timbral characteristics by the sound occurrence process through the time zone analysis of the attack part of the sound started. Finally, analyzed the special characteristics of the vibrato that is important role of musical instrument performance. As a result, the timbral characteristics of Piri is that the volume of the high harmonics was appeared to be high unlike the general classical instrument and the noise quantity rapidly decreased in the sound attack part but the volume value of harmonics increased. And also vibrato that is performance technique is changed pitch and amplitude at the same time by contrast with the general classical instrument. Thus, the timbral characteristic of Piri by the harmonics and the timbre change by the attack part which is sound occurrence process and the change of the pitch and amplitude in the vibrato is characteristic that represented unique quality of Piri. We expect that this achievement can be applied to sound synthesis.

  • PDF

Sound Synthesis of Gayageum using TMS320C6713 DSK (TMS320C6713 DSK 를 이용한 가야금 사운드 합성)

  • Cho, Sang-Jin;Oh, Hoon;Chong, Ui-Pil
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.435-438
    • /
    • 2005
  • In this paper, we implemented a system that is called sound engine in musical synthesizer and synthesized a sound of Gayageum using TMS320C6713 DSK. Sound engine consists of two parts: synthesis algorithm and processor. We improved physical modeling using digital waveguide as a synthesis algorithm and we used TMS320C6713 as a processor. The excitation signals that make timbre are stored in memory. When we input parameters, sound engine synthesizes sound of Gayageum. The experimental result shows that synthesized sounds are very similar to real sounds.

  • PDF

Design Space Exploration of Many-Core Architecture for Sound Synthesis of Guitar on Portable Device (휴대 장치용 기타 음 합성을 위한 매니코어 아키텍처의 디자인 공간 탐색)

  • Kang, Myeongsu;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.1-4
    • /
    • 2014
  • Although physical modeling synthesis is becoming more and more efficient in rich and natural high-quality sound synthesis, its high computational complexity limits its use in portable devices. This constraint motivated research of single-instruction multiple-data many-core architectures that support the tremendous amount of computations by exploiting massive parallelism inherent in physical modeling synthesis. Since no general consensus has been reached which grain sizes of many-core processors and memories provide the most efficient operation for sound synthesis, design space exploration is conducted for seven processing element (PE) configurations. To find an optimal PE configuration, each PE configuration is evaluated in terms of execution time, area and energy efficiencies. Experimental results show that all PE configurations are satisfied with the system requirements to be implemented in portable devices.

  • PDF

Development of Parameter Extraction Algorithm and Software Simulator For a Digital Music FM Synthesis (FM 방식의 디지털 악기음 합성을 위한 소프트웨어 시뮬레이터 및 파라미터 추출 알고리즘 개발)

  • Joon Yul Joo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.24-38
    • /
    • 1994
  • In this paper we develop the software simulator written in a C language for a frequency modulation synthesis and the approximate range of parameters, for a musically satisfactory timbre, obtained by using the software simulator will be applied to develop an algorithm for parameter extraction. For a frequency modulation synthesis, we also develop an algorithm for parameter extraction through waveform analysis in the time domain as well as spectrum analysis using a FFT in the frequency domain. To verify the validity of the developed algorithm as well as software simulator experimentally, we extract parameters for the several music instruments using the suggested algorithm and analyze the synthesized sound by applying the parameters to the software simulator. The evaluation of the synthesized sound is first done by listening the sound directly as a subjective testing. Secondly, to evaluate the synthesized sound objectively with an engineering sense, we compare the synthesized sound with an original one in a time domain and a frequency domain.

  • PDF

Particle-Based Sound Matching and Synthesis for Efficient and Realistic Foam Sound Generation (효율적이고 사실적인 거품 사운드 생성을 위한 입자 기반 사운드 매칭과 합성)

  • YoungChan Shin;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.357-360
    • /
    • 2023
  • 본 논문에서는 거품 입자의 물리적 속성을 활용하여 가상 시뮬레이션 장면에 맞는 거품 사운드를 합성하고 사운드의 물리적 현상을 기반으로 사운드의 크기를 효율적으로 제어할 수 있는 기법을 제안한다. 현실에서는 사운드의 근원지와 청중의 위치 관계에 따라 사운드 크기의 차이가 나타타는 것을 쉽게 관찰할 수 있다. 본 논문에서는 이 문제를 효율적으로 풀어내기 위해 복잡한 3차원 유체의 움직임을 분석하는 게 아닌, 2차원으로 투영된 입자의 유동을 분석하여 사운드를 합성하고 제어하는 방식을 소개한다. 우리의 방법은 거품 사운드의 크기를 효율적으로 조절할 수 있도록 스크린 공간에서 계산된 거품 입자의 속도와 위치를 활용하여 청중의 위치 관계 및 사운드의 방향성을 확인하고, 이를 통해 거품 사운드를 사실적으로 합성하였다.

  • PDF

Design and Implementation of Vocal Sound Variation Rules for Korean Language (한국어 음운 변동 처리 규칙의 설계 및 구현)

  • Lee, Gye-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.851-861
    • /
    • 1998
  • Korean language is to be characterized by the rich vocal sound variation. In order to increase the probability of vocal sound recognition and to provide a natural vocal sound synthesis, a systematic and thorough research into the characteristics of Korean language including its vocal sound changing rules is required. This paper addresses an effective way of vocal sound recognition and synthesis by providing the design and implementation of the Korean vocal sound variation rule. The regulation we followed for the design of the vocal sound variation rule is the Phonetic Standard(Section 30. Chapter 7) of the Korean Orthographic Standards. We have first factor out rules for each regulations, then grouped them into 27 groups for eaeh final-consonant. The Phonological Change Processing System suggested in the paper provides a fast processing ability for vocal sound variation by a single application of the rule. The contents of the process for information augmented to words or the stem of innected words are included in the rules. We believe that the Phonological Change Processing System will facilitate the vocal sound recognition and synthesis by the sentence. Also, this system may be referred as an example for similar research areas.

  • PDF

Baleen Whale Sound Synthesis using a Modified Spectral Modeling (수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성)

  • Jun, Hee-Sung;Dhar, Pranab K.;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.69-78
    • /
    • 2010
  • Spectral modeling synthesis (SMS) has been used as a powerful tool for musical sound modeling. This technique considers a sound as a combination of a deterministic plus a stochastic component. The deterministic component is represented by the series of sinusoids that are described by amplitude, frequency, and phase functions and the stochastic component is represented by a series of magnitude spectrum envelopes that functions as a time varying filter excited by white noise. These representations make it possible for a synthesized sound to attain all the perceptual characteristics of the original sound. However, sometimes considerable phase variations occur in the deterministic component by using the conventional SMS for the complex sound such as whale sounds when the partial frequencies in successive frames differ. This is because it utilizes the calculated phase to synthesize deterministic component of the sound. As a result, it does not provide a good spectrum matching between original and synthesized spectrum in higher frequency region. To overcome this problem, we propose a modified SMS that provides good spectrum matching of original and synthesized sound by calculating complex residual spectrum in frequency domain and utilizing original phase information to synthesize the deterministic component of the sound. Analysis and simulation results for synthesizing whale sounds suggest that the proposed method is comparable to the conventional SMS in both time and frequency domain. However, the proposed method outperforms the SMS in better spectrum matching.

The study of sound source synthesis IC to realize the virtual engine sound of a car powered by electricity without an engine (엔진 없이 전기로 구동되는 자동차의 가상 엔진 음 구현을 위한 음원합성 IC에 관한 연구)

  • Koo, Jae-Eul;Hong, Jae-Gyu;Song, Young-Woog;Lee, Gi-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.571-577
    • /
    • 2021
  • This study is a study on System On Chip (SOC) that implements virtual engine sound in electric vehicles without engines, and realizes vivid engine sound by combining Adaptive Difference PCM (ADPCM) method and frequency modulation method for satisfaction of driver's needs and safety of pedestrians. In addition, by proposing an electronic sound synthesis algorithm applying Musical Instrument Didital Interface (MIDI), an engine sound synthesis method and a constitutive model of an engine sound generation system are presented. In order to satisfy both drivers and pedestrians, this study uses Controller Area Network (CAN) communication to receive information such as Revolution Per Minute (RPM), vehicle speed, accelerator pedal depressed amount, torque, etc., transmitted according to the driver's driving habits, and then modulates the frequency according to the appropriate preset parameters We implemented an interaction algorithm that accurately reflects the intention of the system and driver by using interpolation for the system, ADPCM algorithm for reducing the amount of information, and MIDI format information for making engine sound easier.