• Title/Summary/Keyword: Space Diversity Combining

Search Result 55, Processing Time 0.039 seconds

SER Analysis of QAM with Space Diversity in Rayleigh Fading Channels

  • Kim, Chang-Joo;Kim, Young-Su;Jeong, Goo-Young;Mun, Jae-Kyung;Lee, Hyuck-Jae
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.25-35
    • /
    • 1996
  • This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to noise ratio among all of the diversity channels for SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.

  • PDF

Space Diversity Combining Scheme Using Phase Difference between Main and Diversity Signals (메인과 다이버시티 신호사이 위상차를 이용한 공간 다이버시티 결합방법)

  • Jung, Gillyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.44-51
    • /
    • 2015
  • The deployment of high capacity backhaul is required due to explosive growth in mobile data services. For rapid backhaul deployment, point to point microwave is a much easier and cheaper technology. The space diversity scheme is used in point to point microwave links. The purpose of space diversity is to overcome fading by combining signals from two separate receiver antennas. For signal combining algorithm, maximum power and minimum distortion methods were used and these algorithms were reported not to be good enough for robustness in selective fading. In this paper, a more practically efficient signal combining scheme from the main and diversity branch is proposed and evaluated in selective fading channel. The proposed algorithm has shown significant performance improvement in terms of signal spectrum.

Symbol Error Rates of QAM with Selection Combining Space Diversity in Rayleigh Fading Channels (레일레이 페이딩채널에서 선택성 결합방식의 공간다이버시티를 이용한 QAM의 심벌오율)

  • 김창주;김영수;정구영;문재경;이혁재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.75-79
    • /
    • 1995
  • This paper derives the symbol error rate (SER) for quadrature amplitude modulation (QAM) with L-fold selection combining (SC) space diversity in Rayleigh fading channel. No analysis has been reported yet for theoretical SER performance of QAM with SC space diversity in Rayleigh fading channels. The formula is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise channel over the distribution of the maximum signal-to-noise ratio among all of the diversity channels. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general SC space diversity. Analytical results show that the probability of error decreases with the order of diversity. We can also see that the incremental diversity gain per additional diversity decreases as the number of branches becomes larger.

  • PDF

Evolutionary Algorithm-based Space Diversity for Imperfect Channel Estimation

  • Ghadiri, Zienab Pouladmast;El-Saleh, Ayman A.;Vetharatnam, Gobi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1588-1603
    • /
    • 2014
  • In space diversity combining, conventional methods such as maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SC) are commonly used to improve the output signal-to-noise ratio (SNR) provided that the channel is perfectly estimated at the receiver. However, in practice, channel estimation is often imperfect and this indeed deteriorates the system performance. In this paper, diversity combining techniques based on two evolutionary algorithms, namely genetic algorithm (GA) and particle swarm optimization (PSO) are proposed and compared. Numerical results indicate that the proposed methods outperform the conventional MRC, EGC and SC methods when the channel estimation is imperfect while it shows similar performance as that of MRC when the channel is perfectly estimated.

Dual Diversity over Correlated Ricean Fading Channels

  • Bithas Petros S.;Sagias Nikos C.;Mathiopoulos P. Takis
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.67-74
    • /
    • 2007
  • The performance of dual diversity receivers operating over correlated Ricean fading channels is analyzed. Using a previously derived rapidly converging infinite series representation for the bivariate Ricean probability density function, analytical expressions for the statistics of dual-branch selection combining, maximal-ratio combining, and equal-gain combining output signal-to-noise ratio (SNR) are derived. These expressions are employed to obtain novel analytical formulae for the average output SNR, amount of fading, average bit error probability, and outage probability. The proposed mathematical analysis is used to study various novel performance evaluation results with parameters of interest the fading severity, average input SNRs, and the correlation coefficient. The series convergence rate is also examined verifying the fast convergence of the analytical expressions. The accuracy of most of the theoretical performance evaluation results are validated by means of computer simulations.

Code Combining Cooperative Diversity in Long-haul Transmission of Cluster based Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1293-1310
    • /
    • 2011
  • A simple modification of well known Low Energy Adaptive Clustering Hierarchy (LEACH) protocol is proposed to exploit cooperative diversity. Instead of selecting a single cluster-head, we propose M cluster-heads in each cluster to obtain a diversity of order M. The cluster-heads gather data from all the sensor nodes within the cluster using same technique as LEACH. Cluster-heads transmit gathered data cooperatively towards the destination or higher order cluster-head. We propose a code combining based cooperative diversity protocol which is similar to coded cooperation that maximizes the performance of the proposed cooperative LEACH protocol. The implementation of the proposed cooperative strategy is analyzed. We develop the upper bounds on bit error rate (BER) and frame error rate (FER) for our proposal. Space time block codes (STBC) are also a suitable candidate for our proposal. In this paper, we argue that the STBC performs worse than the code combining cooperation.

Performance Analysis of Adaptive SC/MRC Diversity Combining using in AWGN (AWGN환경에서 적응형 SC/MRC 다이버시티 컴바이너 성능분석)

  • Yun, Deok-Won;Huh, Sung-Uk;Kim, Chun-Won;Choi, Yong-Tae;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.757-763
    • /
    • 2018
  • It is very difficult to achieve sufficient data rate and required quality of service due to the time-varying nature of the radio channel and various jammers such as path loss, delay, Doppler, shadowing and interference. Especially, the propagation path between the transmitting antenna and the tracking antenna mounted on the fuselage during the test and evaluation of the projectile system considered in this paper is based on the rapid movement of the projectile, the interference due to multipath fading due to the terrain, The propagation path may be blocked. In order to effectively improve the multipath fading occurring in the wireless communication system, a diversity combiner technique is required. In this paper, to derive the design and improvement schemes for the space diversity combiner technique among the diversity combiner schemes, the BER performance of maximum ratio combining (MRC) and selection combining (SC) In an adaptive SC / MRC diversity combiner that operates with MRC when it is lower than the specified threshold criterion when comparing the SNR between two signals received from the channel and operates with SC at high and combines the two received signals The BER performance of the system was compared and analyzed.

DIVERSITY DESIGN FOR SENSOR DATA ACQUISITION AT COMS SOC

  • Park, Durk-Jong;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.479-481
    • /
    • 2007
  • COMS will transmit its observed data, Sensor Data, through L-Band with linear polarization. To avoid link loss caused by polarization discrepancy between satellite and SOC DATS, the L-Band antenna at SOC DATS should be linearly polarized. However, SOC DATS is supposed to share single antenna with SOC TTC, so the antenna should be circularly polarized. To cope with about 3dB loss, SOC DATS is designed to receive Sensor Data through two orthogonal circular polarizations, RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). Eventually, SOC DATS can obtain 2.6dB of combining gain through diversity combiner in MODEM/BB. This paper presents the verification on the diversity combining of SOC DATS with test configuration and results in depth.

  • PDF

Performance Analysis of Mixed RF/FSO Dual-hop Transmission with Switch-and-Stay Combining (Switch-and-Stay Combining 기반 Mixed RF/FSO Dual-hop 전송 시스템 성능 분석)

  • Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.493-498
    • /
    • 2018
  • In this paper, we provide the performance analyses of a dual-hop amplify-and-forward(AF) relay transmission composed of asymmetric radio-frequence(RF) and free-space optical(FSO) links. In the mixed RF/FSO system, a relay is equipped with two receive antennas for RF signals and one additional transmit antenna for FSO signals. In order to improve a performance of RF link, a switch-and-stay (SSC) diversity technique is applied at the relay which can provide a proper link performance with a low complexity. Specifically, we offer the performance analyses of the proposed system in terms of outage probability and secrecy outage probability. In numerical examples, we compare the system performances with no diversity and selection combining systems and verify our analytical results via computer-based Monte-Carlo simulations.

A scalar MSDD with multiple antenna reception of Differential Space-Time π/2-Shifted BPSK Modulation

  • Kim Jae-Hyung;Hwang Seung-Wook;Kim Jung-Keun;Kim Yong-Jae
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • In this paper, the issue of blind detection of Alamouti-type differential space-time (ST) ${\pi}/2$-shifted BPSK modulation in static Rayleigh fading channels is considered. We introduce a novel transformation to the received signal from each receiver antenna such that this binary ST modulation, which has a second-order transmit-diversity, is equivalent to QPSK modulation with second-order receive-diversity. The pre-detection combining of the result of transformation allows us to apply a low complexity detection technique specifically designed for receive-diversity, namely, scalar multiple-symbol differential detection (MSDD). With receiver complexity proportional to the observation window length, our receiver can achieve the performance 1.5dB better than that of conventional differential detection ST and 0.5dB worse than that qf a coherent maximum ratio combining receiver (with differential decoding) approximately.