• Title/Summary/Keyword: Space Shuttle Main Engine

Search Result 13, Processing Time 0.031 seconds

Development of MATLAB/Simulink Modular Simulation Toolbox for Space Shuttle Main Engine (MATLAB/Simulink 모듈화 기반 우주왕복선 주엔진 시뮬레이션 툴박스 개발)

  • Cho, Woosung;Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.50-60
    • /
    • 2019
  • This paper introduces the development of a toolbox for the Space Shuttle Main Engine(SSME) based on MATLAB/Simulink. A mathematical model of rocket engine creation and validation can be a complex process, the development of a rocket engine toolbox simplifies this process, thereby facilitating engine performance optimization as well as new design development. The mathematical modeling of the SSME dealt with in this paper is formed by 32 first-order differential equations derived from seven governing equations. We develop the toolbox for the SSME classifying each module according to the engine components. Further, we confirm the validity of the toolbox by comparing the results of the simulation obtained using the toolbox with those obtained using the original simulation of the engine.

Optimal Output Feedback Control Simulation for the Operation of Space Shuttle Main Engine (우주왕복선 액체로켓엔진 작동의 최적출력제어 시뮬레이션)

  • Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.37-53
    • /
    • 2016
  • This paper deals with an optimal output control for Space Shuttle Main Engine (SSME), a liquid propellant rocket engine using a staged-combustion cycle. For this purpose, we modeled simplified mathematical model of SSME using each SSME component divided into 7 major categories and found trim points called Rated Propulsion Level (RPL). For design the closed-loop system of SSME, we designed optimal output feedback Linear Quadratic Regulation (LQR) control system using SSME linearized model under RPL 104% and demonstrated the performance of the controller through numerical simulation.

Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method (Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링)

  • Cha, Jihyoung;Ko, Sangho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.213-217
    • /
    • 2017
  • Since more than 30% of the liquid rocket engine failures occur during the start-up process, and the Space Shuttle Main Engine (SSME) is especially sensitive to small changes in propellant conditions, a 2% error in the valve position or a 0.1sec timing error could lead to significant damage of the engine, simulation modeling of start-up process is important. However, there are many difficulties associated with engine start-up process caused by nonlinear mass flow and heat transfer characteristics associated with filling an unconditioned engine system with cryogenic propellants. In this paper, we modelled a SSME simulation model using partially Computational Fluid Dynamics (CFD) method to solve these problems and checked the performance by comparing with the performance of the simulation model using the lumped method under the state of normal condition.

  • PDF

Dynamic Simulation and Analysis of the Space Shuttle Main Engine with Artificially Injected Faults

  • Cha, Jihyoung;Ha, Chulsu;Koo, Jaye;Ko, Sangho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.535-550
    • /
    • 2016
  • Securing the safety and the reliability of liquid-propellant rocket engines (LREs) for space vehicles is indispensable as engines consist of many complex components and operate under extremely high energy-dense conditions. Thus, health monitoring has become a mandatory requirement, especially for the reusable LREs that are currently being developed. In this context, a dynamic simulation program based on MATLAB/Simulink was developed in the current research on the Space Shuttle Main Engine (SSME), a partly reusable engine. Then, a series of fault simulations using this program was conducted: at a steady state operating condition (104% Rated Propulsion Level), various simulated fault conditions were artificially injected into the simulation models for the five major valves, the pumps, and the turbines of the SSME. The consequent effects due to each fault were analyzed based on the time responses of the major parameters of the engine. It is believed that this research topic is an essential pre-step for the development of fault detection and diagnosis algorithms for reusable engines in the future.

Technology Trend of Small Poppet Type Check Valve for Aerospace Application (항공우주용 소형 포펫 체크밸브 기술 동향)

  • Yoo, Jae-Han;Lee, Soo-Yong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.158-164
    • /
    • 2011
  • Check valves developed for aerospace applications and commercially available for the applications are investigated. The examples include the ones for launch vehicles, SSME (Space Shuttle Main Engine) and GSE (Ground Support Equipment) purges developed by NASA, requiring high reliability, and the ones by KARI. Also the commercial ones for room and cryogenic temperatures by major valve US companies. Relations of design factors such as seal materials and spring rate to principal performances like operating temperature/pressure and cracking pressure are explained. Then potential operational problems such as chatter and contaminations are explained. Also, filters, fittings for end connections and cleanliness requirements for the applications are considered.

  • PDF

Cost Model for Annual Cost Spread Estimation of Space Launch Vehicle Development (발사체 개발의 연차별 비용 추정을 위한 비용모델 개발)

  • Kim, Hong-Rae;Yoo, Dong-Seo;Choi, Jong-Kwon;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.576-584
    • /
    • 2011
  • In order to develop a launch vehicle successfully, it is important to estimate development costs accurately but it is also important to plan the annual budget. In this paper, the statistical method was utilized for cost spreading. For cost spread modeling, the suitability of the model by analyzing several statistical models was evaluated and consequently, the beta-distribution model has been selected. In this study, the validity of the annual estimation cost model was verified through the comparison of the actual development cost distribution and the estimating cost distribution of Space Shuttle Main Engine. In addition, this paper estimated the annual budget required for the development of the KSLV-II using currently allocated cost for successful development. It is anticipated that the present cost spread model can be applied to not only launch vehicle development but also other large complex system development.

Development of Energy Balance Program for Staged-Combustion Cycle of Liquid Rocket Engine (액체로켓엔진 통합 설계를 위한 에너지 발란스 프로그램 개발)

  • Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.93-97
    • /
    • 2010
  • The energy balance program which can balance the relations among energy, mass flow, pressure in the staged-combustion cycle of the liquid rocket engine has been developed. The modular approach has been chosen for the analysis; the engine cycle consists of the elements from the predefined component analysis program. The engine with the staged-combustion cycle has been decomposed into several principal component modules, such as a thruster chamber, turbopumps, turbines, supply system components and a pre-burner. The program has been verified with comparison of the results to the selected data of the space shuttle main engine.

  • PDF

An Investigation on the Failure Examples of Space Launcher development in U.S.A./Europe (미국/유럽의 우주발사체 개발 중 실패사례 분석)

  • Kim, Ji-Hoon;Lee, Han-Ju;Jung, Dong-Ho;Cho, Sang-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.93-98
    • /
    • 2006
  • The advanced countries like the United States of America and Europe have experienced many failures in development of space launch systems. Research and analysis of the failures will be helpful to our launch system development. In this report, the failures of Space Shuttle in U.S.A. and Ariane in Europe were investigated and analyzed. These are excessively small portion of the failures, so it is necessary to investigate and research the more various failures of the other countries specially Russia(former Soviet Union).

  • PDF

2유체 전단 동축형 인젝터의 미립화 및 분무특성에 관한 실험적 연구

  • Jeon, Chang-Hwan;Han, Jae-Seob;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.1-1
    • /
    • 1999
  • 2유체 동축인젝터(coaxial twin fluid injector)는 액체산소와 액체수소를 추진제로 사용하는 SSME(Space Shuttle Main Engine)이나 유럽의 Arian 5 Vulcain 엔진과 같은 저온추진제 엔진에 널리 사용되고 있다. 추진제를 미립화 시키는 장치로서 사용하는 다른 여러 형태의 인젝터에 비교할 때 저속의 액체산화제 주위에 고속의 가스연료가 분사됨으로서 발생되는 전단력에 의해 추진제가 미립화되는 특징을 가지며, 이러한 메카니즘은 매우 복잡하여 아직까지 정확히 규명되지 못하고 있는 실정이다.

  • PDF

Numerical Analysis of Nonlinear Combustion Instability Using Pressure-Sensitive Time Lag Hypothesis (시간지연 모델을 이용한 비선형 연소불안정 해석기법 연구)

  • Park Tae-Seon;Kim Seong-Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.671-681
    • /
    • 2006
  • This study focuses on the development of numerical procedure to analyze the nonlinear combustion instabilities in liquid rocket engine. Nonlinear behaviors of acoustic instabilities are characterized by the existence of limit cycle in linearly unstable engines and nonlinear or triggering instability in linearly stable engines. To discretize convective fluxes with high accuracy and robustness, approximated Riemann solver based on characteristics and Euler-characteristic boundary conditions are employed. The present procedure predicts well the transition processes from initial harmonic pressure disturbance to N-like steep-fronted shock wave in a resonant pipe. Longitudinal pressure oscillations within the SSME(Space Shuttle Main Engine) engine have been analyzed using the pressure-sensitive time lag model to account for unsteady combustion response. It is observed that the pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions.