• Title/Summary/Keyword: Spacing of aboveground

Search Result 2, Processing Time 0.025 seconds

Shielding effects and buckling of steel tanks in tandem arrays under wind pressures

  • Portela, Genock;Godoy, Luis A.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.325-342
    • /
    • 2005
  • This paper deals with the buckling behavior of thin-walled aboveground tanks under wind load. In order to do that, the wind pressures are obtained by means of wind-tunnel experiments, while the structural non linear response is computed by means of a finite element discretization of the tank. Wind-tunnel models were constructed and tested to evaluate group effects in tandem configurations, i.e. one or two tanks shielding an instrumented tank. Pressures on the roof and on the cylindrical part were measured by pressure taps. The geometry of the target tank is similar in relative dimensions to typical tanks found in oil storage facilities, and several group configurations were tested with blocking tanks of different sizes and different separation between the target tank and those blocking it. The experimental results show changes in the pressure distributions around the circumference of the tank for half diameter spacing, with respect to an isolated tank with similar dimensions. Moreover, when the front tank of the tandem array has a height smaller than the target tank, increments in the windward pressures were measured. From the computational analysis, it seems that the additional stiffness provided by the roof prevents reductions in the buckling load for cases even when increments in pressures develop in the top region of the cylinder.

Study on the Evaluation of Radiant Heat Effects of Oil Storage Tank Fires Due to Environmental Conditions (환경조건에 따른 유류저장탱크 화재의 복사열 영향 평가 연구)

  • Lee, Jeomdong;Ryu, Juyeol;Park, Seowon;Yoon, Myong-O;Lee, Changwoo
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • In this paper, the risk of damages to humans and properties due to fire explosions in gasoline storage tanks is identified, and the effects of radiant heat on adjacent tanks are evaluated to present the necessary area to secure safety. A simulation was conducted to evaluate the effect of radiant heat (Maximum emission) on adjacent tanks in an oil storage tank fire due to environmental conditions (Wind speed and temperature) in the Northern Gyeonggi Province. The result indicated that the radiant heat released in the fire of an oil storage tank was increased by approximately 1.9 times by the maximum wind speed and the difference occurred in the range of 700~800 kW by the maximum temperature. If a storage tank fire occurs, securing approximately 34.4 m of holding area is necessary. In the future, evaluating the radiant heat emitted by the fire of gasoline storage tanks will be required by applying various environmental conditions, and through this, research on specific and quantitative holding area is required.