• Title/Summary/Keyword: Spatial operation

Search Result 795, Processing Time 0.037 seconds

Design and Implementation of a Spatial-Operation-Trigger for Supporting the Integrity of Meet-Spatial-Objects (상접한 공간 객체의 무결성 지원을 위한 공간 연산 트리거의 설계 및 구현)

  • Ahn, Jun-Soon;Cho, Sook-Kyoung;Chung, Bo-Hung;Lee, Jae-Dong;Bae, Hae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.2
    • /
    • pp.127-140
    • /
    • 2002
  • In a spatial database system, the semantic integrity should be supported for maintaining the data consistency. In the real world, spatial objects In boundary layer should always meet neighbor objects, and they cannot hold the same name. This characteristic is an implied concept in real world. So, when this characteristic is disobeyed due to the update operations of spatial objects, it is necessary to maintain the integrity of a layer. In this thesis, we propose a spatial-operation-trigger for supporting the integrity of spatial objects. The proposed method is defined a spatial-operation-trigger based on SQL-3 and executed when the constraint condition is violated. A spatial-operation-trigger have the strategy of execution. Firstly, for one layer, the spatial and aspatial data triggers are executed respectively. Secondly, the aspatial data trigger for the other layers is executed. Spatial-operation-trigger for one layer checks whether the executed operation updates only spatial data, aspatial data, or both of them, and determines the execution strategy of a spatial-operation-trigger. Finally, the aspatial data trigger for the other layers is executed. A spatial-operation-trigger is executed in three steps for the semantic integrity of the meet-property of spatial objects. And, it provides the semantic integrity of spatial objects and the convenience for users using automatic correcting operation.

A Prototype of Three Dimensional Operations for GIS

  • Chi, Jeong-Hee;Lee, Jin-Yul;Kim, Dae-Jung;Ryu, Keun-Ho;Kim, Kyong-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.880-884
    • /
    • 2002
  • According to the development of computer technology, especially in 3D graphics and visualization, the interest for 3D GIS has been increasing. Several commercial GIS softwares are ready to provide 3D function in their traditional 2D GIS. However, most of these systems are focused on visualization of 3D objects and supports few analysis functions. Therefore in this paper, we design not only a spatial operation processor which can support spatial analysis functions as well as 3D visualization, but also implement a prototype to operate them. In order to support interoperability between the existing models, the proposed spatial operation processor supports the 3D spatial operations based on 3D geometry object model which is designed to extend 2D geometry model of OGIS consortium, and supports index based on R$^*$-Tree. The proposed spatial operation processor can be applied in 3D GIS to support 3D analysis functions.

  • PDF

Spatial Operation Allocation Scheme over Common Query Regions for Distributed Spatial Data Stream Processing (분산 공간 데이터 스트림 처리에서 질의 영역의 겹침을 고려한 공간 연산 배치 기법)

  • Chung, Weon-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2713-2719
    • /
    • 2012
  • According to increasing of various location-based services, distributed data stream processing techniques have been widely studied to provide high scalability and availability. In previous researches, in order to balance the load of distributed nodes, the geographic characteristics of spatial data stream are not considered. For this reason, distributed operations for adjacent spatial regions increases the overall system load. We propose a operation allocation scheme considering the characteristics of spatial operations to effectively processing spatial data stream in distributed computing environments. The proposed method presents the efficient share maximizing approach that preferentially distributes spatial operations sharing the common query regions to the same node in order to separate the adjacent spatial operations on overlapped regions.

Non-Duplication Loading Method for supporting Spatio-Temporal Analysis in Spatial Data Warehouse (공간 데이터웨어하우스에서 시공간 분석 지원을 위한 비중복 적재기법)

  • Jeon, Chi-Soo;Lee, Dong-Wook;You, Byeong-Seob;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • In this paper, we have proposed the non-duplication loading method for supporting spatio-temporal analysis in spatial data warehouse. SDW(Spatial Data Warehouse) extracts spatial data from SDBMS that support various service of different machine. In proposed methods, it extracts updated parts of SDBMS that is participated to source in SDW. And it removes the duplicated data by spatial operation, then loads it by integrated forms. By this manner, it can support fast analysis operation for spatial data and reduce a waste of storage space. Proposed method loads spatial data by efficient form at application of analysis and prospect by time like spatial mining.

  • PDF

An Efficient Spatial Index Technique based on Flash-Memory (플래시 메모리 기반의 효율적인 공간 인덱스 기법)

  • Kim, Joung-Joon;Sim, Hee-Joung;Kang, Hong-Koo;Lee, Ki-Young;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.133-142
    • /
    • 2009
  • Recently, with the advance of wireless internet and the frequent use of mobile devices, demand for LBS(Location Based Service) is increasing, and research is required on spatial indexes for the storage and maintenance of spatial data to provide efficient LBS in mobile device environments. In addition, the use of flash memory as an auxiliary storage device is increasing in order to store large spatial data in a mobile terminal with small storage space. However, the application of existing spatial indexes to flash-memory lowers index performance due to the frequent updates of nodes. To solve this problem, research is being conducted on flash-memory based spatial indexes, but the efficiency of such spatial indexes is lowered by low utilization of buffer and flash-memory space. Accordingly, in order to solve problems in existing flash-memory based spatial indexes, this paper proposed FR-Tree (Flash-Memory based R-Tree) that uses the node compression technique and the delayed write operation technique. The node compression technique of FR-Tree increased the utilization of flash-memory space by compressing MBR(Minimum Bounding Rectangle) of spatial data using relative coordinates and MBR size. And, the delayed write operation technique reduced the number of write operations in flash memory by storing spatial data in the buffer temporarily and reflecting them in flash memory at once instead of reflecting the insert, update and delete of spatial data in flash-memory for each operation. Especially, the utilization of buffer space was enhanced by preventing the redundant storage of the same spatial data in the buffer. Finally, we perform ed various performance evaluations and proved the superiority of FR-Tree to the existing spatial indexes.

  • PDF

A method of calculating the number of fishing operation days for fishery compensation using fishing vessel trajectory data (어선 항적데이터를 활용한 어업손실보상을 위한 조업일수 산출 방법)

  • KIM, Kwang-Il;KIM, Keun-Huyng;YOO, Sang-Lok;KIM, Seok-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.334-341
    • /
    • 2021
  • The fishery compensation by marine spatial planning such as routeing of ships and offshore wind farms is required objective data on whether fishing vessels are engaged in a target area. There has still been no research that calculated the number of fishing operation days scientifically. This study proposes a novel method for calculating the number of fishing operation days using the fishing trajectory data when investigating fishery compensation in marine spatial planning areas. It was calculated by multiplying the average reporting interval of trajectory data, the number of collected data, the status weighting factor, and the weighting factor for fishery compensation according to the location of each fishing vessel. In particular, the number of fishing operation days for the compensation of driftnet fishery was considered the daily average number of large vessels from the port and the fishery loss hours for avoiding collisions with them. The target area for applying the proposed method is the routeing area of ships of Jeju outer port. The yearly average fishing operation days were calculated from three years of data from 2017 to 2019. As a result of the study, the yearly average fishing operation days for the compensation of each fishing village fraternity varied from 0.0 to 39.0 days. The proposed method can be used for fishery compensation as an objective indicator in various marine spatial planning areas.

Adaptive Upstream Backup Scheme based on Throughput Rate in Distributed Spatial Data Stream System (분산 공간 데이터 스트림 시스템에서 연산 처리율 기반의 적응적 업스트림 백업 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5156-5161
    • /
    • 2013
  • In distributed spatial data stream processing, processed tuples of downstream nodes are replicated to the upstream node in order to increase the utilization of distributed nodes and to recover the whole system for the case of system failure. However, while the data input rate increases and multiple downstream nodes share the operation result of the upstream node, the data which stores to output queues as a backup can be lost since the deletion operation delay may be occurred by the delay of the tuple processing of upstream node. In this paper, the adaptive upstream backup scheme based on operation throughput in distributed spatial data stream system is proposed. This method can cut down the average load rate of nodes by efficient spatial operation migration as it processes spatial temporal data stream, and it can minimize the data loss by fluid change of backup mode. The experiments show the proposed approach can prevent data loss and can decrease, on average, 20% of CPU utilization by node monitoring.

Constraint Data Modeling for Spatiotemporal Data Application (시공간 데이터 응용을 위한 제약 데이터 모델링)

  • Jung, Hun Jo;Woo, Sung Koo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.45-56
    • /
    • 2010
  • This paper suggests constraint data modeling based on constraint data presentation techniques to perform complex spatial database operation naturally. We were able to identify the limitation of extendibility of dimension and non-equal framework via relevant research for former schema of spatial database and query processing. Therefore we described generalized tuple of spatial data and the definition of suggested constraint data modeling. Also we selected MLPQ/PReSTO tool among constraint database prototype and compare standard functionality of ARC/VIEW. Then we design scenario for spatial operation using MLPQ/PReSTO and we suggested application effect after query processing. Based on above explanation, we were able to identify that we can process spatial data naturally and effectively using simple constraint routine on same framework via constraint data modeling.

The Effects of the Mathematics Study based RME Theory with Virtual Operation Tools on Spatial Sense and Mathematical Attitudes in Elementary School (가상조작 도구를 활용한 RME기반 수학학습이 초등학생의 공간감각 및 수학적 태도에 미치는 효과)

  • Son, Tae Kwon;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.737-760
    • /
    • 2016
  • This study analyzed the 2009 revised curriculum 6th grade math geometric domain and developed virtual operation tool contents based RME theory. These materials were examine to find out how to effect on the spatial sense and mathematical attitudes by applying it to teach the 6th grade students. The results were as follows. First, it is more effective for improving spatial sense to study mathematics based RME theory with virtual operation tool contents than normal one. This means that mathematics study based RME theory with virtual operation contents overcomes the limitations of flat learning environment. And it is great educational and effective method for students to improve their spatial sense. Second, it is more effective for improving mathematical attitudes to study mathematics based RME theory with virtual operation tool contents than normal one. This means that Mathematics study based RME theory with virtual operation contents makes student more participate learning actively. It helps the students who have passive learning habits to have self-directed learning habits, ability to cooperation and communicate. The results of this study suggest that mathematics study based RME theory is very helpful for student to improve their spatial sense and have positive effect on self-concept in mathematics, attitudes toward mathematics and improving study habits in mathematical attitudes.

A study on the Spatial Composition and Area Calculation in the Plastic Surgical Clinics -Focused on case studies in Kangnam-Gu (성형외과의원의 공간구성과 면적산정에 관한 연구 - 강남구 사례분석을 중심으로 -)

  • Lee, Yong-Gil;Park, Jae-Seung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.7 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • This study is about the Spatial Composition and Area Calculation in Plastic Surgical Clinics. 1. The space of the plastic surgical clinics are divided into 4 sections; exam, exam support, the staffs, and waiting and reception area. 2. The average G/N ratio of width was 1.46. The Plastic surgical clinics which had great deviation in the ratio showed these characteristics; first, when they were planned at first, the operation rooms were not assigned enough space; second. space for supporting exam and the activities of staffs was given too little consideration in their first drafts. 3. The average size of operation rooms was $21.76m^2$. The most desirable size was found to be $26.4m^2$ when we put the number of staffs, the movement area of stretcher, and the movement lines of operation room into consideration.

  • PDF