• Title/Summary/Keyword: Spectral Lamp

Search Result 59, Processing Time 0.029 seconds

Light Intensity and Spectral Characteristics of Fluorescent Lamps as Artificial Light Source for Close illumination in Transplant Production Factory (식물묘공장의 근접조명용 인공광원으로서 형광등의 광강도 및 분광 특성)

  • 김용현;이종호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.591-598
    • /
    • 1998
  • Light intensity and spectral characteristics of different types of fluorescent lamps were tested to investigate their possibility as the artificial lighting sources for the close illumination applied in the transplant production factory. Photosynthetic photon flux densitiy(PPF), illuminance and irradiance for all lamps decreased logarithmically with an increase of the vertical distance from the lighting source. The fluorescent lamp specially designed plant growth (PG lamp) showed a maximum spectral irradiance at the wavelength of 660nm. However, it showed lower irradiance than that of a standard fluorescent lamp at the range of wavelength between 500 and 600nm. On the other hand, PG lamp showed higher PPF and lower illuminance than those of the standard fluorescent lamp. The maximum peak of spectral characteristics for both of the single and twin three-bind fluorescent lamps was shorn at the wavelength of 545m and the next peaks were shown at the wavelength of 610nm and 435nm, respectively. Since the red fluorescent lamp has a narrower peak at the wavelength of 660nm, it may be useful for the supplementary red lighting. For three of standard, single three-band and twin three-band fluorescent lamps, the values of conversion factor for converting illuminance to PPF fell within the narrow range from 76 to 791x/$\mu$molㆍm$^{-2}$ ㆍs$^{-l}$ . However, for PG lamp, it was 29.71x/$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$. Also, the values of conversion factor for converting PPF to irradiance of fluorescent lamp used in this study ranged between 4.85 and 5.34$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$/Wㆍm$^{-2}$ .

  • PDF

An reproduction algorithm of nighttime road-image for visibility evaluation of headlamps (헤드램프의 시계성 평가를 위한 야간 도로 영상 재현 알고리즘)

  • 이철희;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.69-72
    • /
    • 2000
  • This study proposes a new calculation method for generating real nighttime lamp-lit images. In order to improve the color appearance in the prediction of a nighttime lamp-lighted scene, the lamp-lit image is synthesized based on spectral distribution using the estimated local spectral distribution of the headlamps and the surface reflectance of every object. The principal component analysis method is introduced to estimate the surface color of an object, and the local spectral distribution of the headlamps is calculated based on the illuminance data and spectral distribution of the illuminating headlamps. HID and halogen lamps are utilized to create beam patterns and captured road scenes are used as background images to simulate actual headlamp-lit images on a monitor. As a result, the reproduced images presented a color appearance that was very close to a real nighttime road image illuminated by single and multiple headlamps.

  • PDF

Simulation of Rear Lamp using Spectral-Based Ray Tracing (분광분포기반의 광선추적을 이용한 리어램프의 시뮬레이션)

  • 이명영;이철희;이호근;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.327-330
    • /
    • 2002
  • This paper proposes the simulation algorithm of rear lamp of car using a ray tracing method that models transmission and refraction of light frequently used in computer graphics At first. To reproduce an image accurately. incident on a sight of viewer, we propose the backward ray tracing method based on spectral distribution representing physical characteristics of illuminant and object used in real. We implement the reproduction algorithm of rear lamp image applying the Bouguer-Beer's law to an optical absorptive phenomenon. As the result, more realistic image can be reproduced.

  • PDF

Self Reversal Effect of the High-pressured Diatomic Sulfur in the Electrodeless Sulfur Discharge Lamp (무전극 황방전등에서 고압 이원자 황($S_2$)의 자체 역전 효과)

  • Chu, Jang-Hee;Goo, Sun-Geun;Park, Ki-Jun;Yi, Young-Woo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.609-615
    • /
    • 2000
  • A prototype electrodeless sulfur lamp was developed and investigated the spectroscopic characteristics. The emission spectra of $S_2$ in the microwave-discharged eletrodeless sulfur lamp (ESL) were studied at various input power. The emission spectra of the ESL shift to longer wavelength with increasing of the input power. We have shown that this is due to the self reversal effect in the high pressure gas discharge. We also show that the self reversal effect increases as the rotation of the discharged bulb. The spectral distribution of the ESL shifts about 45 nm toward visible region from UV region due to the rotation of the lamp bulb.

  • PDF

A Thermal Flow Analysis for an Optimal shape of Solar Lamp Bank (최적의 램프뱅크형태를 결정하기 위한 열유동 해석)

  • Baek, Sang-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.82-89
    • /
    • 2012
  • This study is on the thermal flow analysis to select an optimal shape of solar lamp bank. Solar Lamp bank is designed by the lamp bank design program based on point light source theory. The reliability of the program for lamp bank design is verified through irradiance variation experiments of a kind of lamp according to horizontal distance. Solar lamp bank facilitates heat distribution and satisfies the irradiance in the three wave length which test guidelines require. Among the 4 kinds of lamp bank, since lamp bank type D satisfies uniformity ${\pm}10%$ and also doesn't exceed total irradiance 1,232 $W/m^2$, type D is finally selected.

A Study on the Development of Three Wavelength Solar Bank By Mercury-Halogen Lamps Combination Method (수은-할로겐 램프 조합방식 삼파장 솔라뱅크 개발에 관한 연구)

  • Lee, Jae Myung;Baek, Sang Hwa;Park, So Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1147-1154
    • /
    • 1999
  • We developed three-wavelength solar bank which is a very important part of the solar simulator with the commercial mercury lamps and projected halogen lamps. This was developed to satisfy simultaneously following three points: the ${\pm}10%$ uniformity of irradiance of the target area and irradiance in the each wave region and $1120W/m^2$ maximum irradiance of the solar in the summer. We used spectral radiance to determine the standard of the spectral irradiance and developed the perfect three-wavelength solar bank,considering of directionality, irradiance distance, interval both lamps, lamps combination and lamp numbers based on the measured spectral irradiance. To proof the capability of the three wavelength solar bank, We carefully analyzed color differences and heat transfer. As a result, we found that three wavelength solar bank was much better than commercial infrared lamp bank in terms of the color differences, heat transfer phenomena.

  • PDF

Characteristics of Spectral Irradiance Based on the Distance from the Light Source and Operating Method for Fishing Lamps with a Combined Light Source (이종(異種) 광원 조합에 의한 복수 광원의 분광 방사특성과 광달(光達) 거리 및 집어등 운용방법)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.711-720
    • /
    • 2009
  • Characteristics of spectral irradiance based on the distance from the light source, which combined metal halide lamp and high-luminance light-emitting diode (LED) light, were studied to investigate a suitable operating method for fishing lamps of the next generation. A 380-780 nm wavelength radiation was superior when using 1 W electrical power in the order of metal halide lamp, blue LED, white LED, and combined LED lights. The wavelengths at which the irradiance was at a maximum were fixed to 581 nm for the light source, which was combined for each ratio. If the irradiance characteristics at 300-1100 nm wavelengths were set as 100%, the irradiance rates at 400-599 nm were 100%, 72.7%, 88.9%, and 69.5% for the blue, white, combined LED lights, and metal halide lamp, respectively. This indicated that the color rendering of the LED lights was dependent on the metal halide lamp light source. When the horizontal profiles (450-550 nm wavelength) of irradiances were compared to a different type of light source in the ratio white LED: combined LED lights: blue LED: metal halide lamp, the irradiated area of more than $0.01\;{\mu}mol/s/m^2/nm$ was in the ratio 1.0 : 1.3 : 1.7 : 37.3, respectively. Based on the radiation characteristics and irradiance according to the distance from the light source, LED lights have an estimated economic efficiency if used before and after operation of a metal halide lamp.

Temperature Distribution Measurement of High-pressure Mercury Lamp using Spectroscopic Method (분광 분석법에 의한 고압 수은등의 온도분포 측정)

  • 김상용;김창섭;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1989.10a
    • /
    • pp.13-18
    • /
    • 1989
  • Temperature distribution of 250W high-pressure mercury lamp has been measured by the spectroscopic method using relative intensities of spectral lines. To obtain radial temperature distribution, the measured intensity which was integrated along the line of sight was transformed into radial line intensity by Abel's inversion. Temperature was determined from relative intensities of spectral lines of the same atomic species. The measured temperature of 250W high-pressure mercury lamp is 6000K at the axis. In this experiment temperature profile of high-pressure arc is papabolic as known.

  • PDF

Backlight for TFT LCD

  • Jeong, Jin-Man;Eom, Deok-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.201-202
    • /
    • 2000
  • This seminar outlines the technology involved in the backlighting of TFT LCDs. It covers basic terminology, lighting requirements, lamp types and optical techniques. These will be reviewed and compared. Optical factors will be covered and related to space constraints. The spectral requirements, luminance levels, system efficacy, power requirements, lamp temperature, as well as other parameters affecting system performance will be discussed.

  • PDF

Analysis of Spectral Light Intensity of High Pressure Sodium and Metal Halide Lamps for Plant Growth (식물생장용 고압나트륨램프와 메탈할라이드램프의 분광 광강도 분석)

  • Lee, Hye-In;Kim, Yong-Hyeon;Kim, Dong-Eok
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.413-419
    • /
    • 2010
  • Plant growth was greatly affected by the spectral distribution and light intensity of artificial lighting sources. In this study, the spectral characteristics of high power sodium (HPS) lamps and metal halide (MH) lamps produced by three different manufacturers were measured. Even though the spectral distribution of HPS lamps with lamp wattage of 250 W and 400 W was very similar, but the spectral light intensity by the manufacturers was different. Difference in the spectral light intensity of MH lamps by the manufacturers was increased with the increasing lamps wattage. Light intensity at the region of blue (B), green (G), red (R) and far-red (FR) light of HPS and MH lamps was also analyzed. HPS lamps showed the light intensity in order of R, FR, B and G light. The ratio of G, B, R and FR to photosynthetic photon flux (PPF) of HPS lamps with the lamp wattage of 250 W was 3.0-3.2%, 5.5-5.9%, 17.3-19.2% and 6.5-7.8%, respectively. For MH lamps, it showed the light intensity in order of R, FR, B, and G. The ratio of B, G, R, and FR to PPF of MH lamps with 250 W was 14.0-15.5%, 22.6-27.5%, 7.5-9.5% and 2.7-4.2%, respectively. HPS and MH lamps with 400 W had a relatively smaller ratio of R and FR to PPF than those with 250 W. HPS lamps showed that the ratio of light intensity of B and FR to R was 0.15-0.28 and 0.36-0.4, respectively. For MH lamps, the ratio of light intensity of B and FR to R was 1.26-2.72 and 0.27-0.56, respectively. From these results, it was concluded that the portion of blue light of MH lamps was higher than those of HPS lamps.