• Title/Summary/Keyword: Spectroscopic analysis

Search Result 884, Processing Time 0.028 seconds

Fast Analysis of Film Thickness in Spectroscopic Reflectometry using Direct Phase Extraction

  • Kim, Kwangrak;Kwon, Soonyang;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • A method for analysis of thin film thickness in spectroscopic reflectometry is proposed. In spectroscopic reflectometry, there has been a trade-off between accuracy and computation speed using the conventional analysis algorithms. The trade-off originated from the nonlinearity of spectral reflectance with respect to film thickness. In this paper, the spectral phase is extracted from spectral reflectance, and the thickness of the film can be calculated by linear equations. By using the proposed method, film thickness can be measured very fast with high accuracy. The simulation result shows that the film thickness can be acquired with high accuracy. In the simulation, analysis error is lower than 0.01% in the thickness range from 100 nm to 4 um. The experiments also show good accuracy. Maximum error is under $40{\AA}$ in the thickness range $3,000-20,000{\AA}$. The experiments present that the proposed method is very fast. It takes only 2.6 s for volumetric thickness analysis of 640*480 pixels. The study suggests that the method can be a useful tool for the volumetric thickness measurement in display and semiconductor industries.

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography

  • Song, Woosub;Lee, Seung Seok;Lee, Byeong-il;Choi, Eun Seo
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.278-288
    • /
    • 2021
  • We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.

Spectroscopic Techniques for Nondestructive Quality Inspection of Pharmaceutical Products: A Review

  • Kandpal, Lalit Mohan;Park, Eunsoo;Tewari, Jagdish;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.394-408
    • /
    • 2015
  • Spectroscopy is an emerging technology for the quality assessment of pharmaceutical samples, from tablet manufacturing to final quality assurance. The traditional methods for the quality management of pharmaceutical tablets are time consuming and destructive, while spectroscopic techniques allow rapid analysis in a non-destructive manner. The advantage of spectroscopy is that it collects both spatial and spectral information (called hyperspectral imaging), which is useful for the chemical imaging of pharmaceutical samples. These chemical images provide both qualitative and quantitative information on tablet samples. In the pharmaceutics, spectroscopic techniques are used for a variety of applications, such as analysis of the homogeneity of powder samples as well as determination of particle size, product composition, and the concentration, uniformity, and distribution of the active pharmaceutical ingredient in solid tablets. This review paper presents an introduction to the applications of various spectroscopic techniques such as hyperspectroscopy and vibrational spectroscopies (Raman spectroscopy, FT-NIR, and IR spectroscopy) for the quality and safety assessment of pharmaceutical solid dosage forms. In addition, various chemometric techniques that are highly essential for analyzing the spectroscopic data of pharmaceutical samples are also reviewed.

NEW ORBITAL PARAMETERS AND RADIAL VELOCITY CURVE ANALYSIS OF SPECTROSCOPIC BINARY STARS

  • Ghaderi, Kamal;Pirkhedri, Ali;Rostami, Touba;Khodamoradi, Salem;Fatahi, Hedayat
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • We use a Probabilistic Neural Network (PNN) technique to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of five double-lined spectroscopic binary systems (i.e., EQ Tau, V376 And, V776 Cas, V2377 Oph and EE Cet), we find the corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by other groups via more traditional methods.

Admittance Spectroscopic Analysis of Organic Light Emitting Diodes with a LiF Buffer Layer

  • Kim, Hyun-Min;Park, Hyung-June;Yi, Jun-Sin;Oh, Se-Myoung;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1014-1017
    • /
    • 2006
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for $ITO/Alq_3/LiF/Al$ device structure. The admittance spectroscopic analysis of the devices with LiF layer shows reduction in contact resistance $(R_C)$, parallel resistance $(R_P)$ and increment in parallel capacitance $(C_P)$.

  • PDF

Spectroscopic Studies of Emission Line Galaxies

  • Chun, M.S.;Y.I.Byun
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.10a
    • /
    • pp.20-30
    • /
    • 1993
  • Spectroscopic observations were made to study 42 emission line objects. The analysis of these long slit spectra shows that 15 out of 42 galaxies are blue compact galaxies. Among the 42 objects, 9 galaxies show the spectra of the typical starburst galaxy.

  • PDF

Qualitative and Quantitative Analysis of Space Minerals using Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy (레이저 유도 분해 분광법과 라만 분광법을 이용한 우주 광물의 정성 및 정량 분석 기법)

  • Kim, Dongyoung;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2018
  • In order to analyze space resources, it had to be brought to earth. However, using laser-induced breakdown spectroscopy(LIBS) and Raman spectroscopy, it is possible to analyze qualitative and quantitative analysis of space minerals in real time. LIBS is a spectroscopic method in which a high energy laser is concentrated on a material surface to generate a plasma, and the emitted light is acquired through a spectroscope to analyze the atomic composition. Raman spectroscopy is a spectroscopic method that analyzes the molecular structure by measuring scattered light. These two spectroscopic methods are complementary spectroscopic methods for analyzing the atoms and molecules of unknown minerals and have an advantage as space payloads. In this study, data were analyzed qualitatively by using principal component analysis(PCA). In addition, a mixture of two minerals was prepared and a quantitative analysis was performed to predict the concentration of the material.

DATA REDUCTION OF AKARI/IRC SPECTROSCOPIC OBSERVATIONS

  • Usui, Fumihiko;Onaka, Takashi;AKARI/IRC team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.41-43
    • /
    • 2017
  • AKARI performed about 10,000 spectroscopic observations with the Infrared Camera (IRC) during its mission phase. These IRC observations provide unique spectroscopic data at near- and mid-infrared wavelengths for studies of the next few decades because of its high sensitivity and unique wavelength coverage. In this paper, we present the current status of the activity for improving the IRC spectroscopic data reduction process, including the toolkit and related data packages, and also discuss the goal of this project.

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.

Spectroscopic observation of the massive high-z (z=1.48) galaxy cluster SPT-CL J2040-4451 using Gemini Multi-Object Spectrographs

  • Kim, Jinhyub;Jee, Myungkook J.;Kim, Seojin F.;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • Mass measurement of high-redshift galaxy clusters with high accuracy is important in constraining cosmological parameters. Extremely massive clusters at high redshift may impose a serious tension with the current ΛCDM paradigm. SPT-CL J2040-4451 at z=1.48 is considered one such case given its redshift and mass estimate inferred from the SZ data. The system has also been confirmed to be indeed massive from a recent weak-lensing (WL) analysis. Comparison of the WL mass with the spectroscopic result may provide invaluable information on the dynamical stage of the system. However, the existing spectroscopic coverage of the cluster is extremely poor; only 6 blue star-forming galaxies have been found within the virial radius, which results in highly inflated and biased velocity dispersion. In this work, we present a spectroscopic analysis of the member candidates using Gemini Multi-Object Spectrographs (GMOS) observation in Gemini South. The observation was designed to find early-type member galaxies within the virial radius and to obtain reliable velocity dispersion. We explain our selection scheme and preliminary results of the spectra. We also compare the dynamical mass estimate inferred from the velocity dispersion with the WL mass.

  • PDF