• Title/Summary/Keyword: Speech recognition robot

Search Result 70, Processing Time 0.031 seconds

Implementation of Hidden Markov Model based Speech Recognition System for Teaching Autonomous Mobile Robot (자율이동로봇의 명령 교시를 위한 HMM 기반 음성인식시스템의 구현)

  • 조현수;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.281-281
    • /
    • 2000
  • This paper presents an implementation of speech recognition system for teaching an autonomous mobile robot. The use of human speech as the teaching method provides more convenient user-interface for the mobile robot. In this study, for easily teaching the mobile robot, a study on the autonomous mobile robot with the function of speech recognition is tried. In speech recognition system, a speech recognition algorithm using HMM(Hidden Markov Model) is presented to recognize Korean word. Filter-bank analysis model is used to extract of features as the spectral analysis method. A recognized word is converted to command for the control of robot navigation.

  • PDF

The Robot Speech Recognition using TMS320VC5510 DSK (TMS320VC5510 DSK를 이용한 음성인식 로봇)

  • Choi, Ji-Hyun;Chung, Ik-Joo
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.211-218
    • /
    • 2007
  • As demands for interaction of humans and robots are increasing, robots are expected to be equipped with intelligibility which humans have. Especially, for natural communication, hearing capabilities are so essential that speech recognition technology for robot is getting more important. In this paper, we implement a speech recognizer suitable for robot applications. One of the major problem in robot speech recognition is poor speech quality captured when a speaker talks distant from the microphone a robot is mounted with. To cope with this problem, we used wireless transmission of commands recognized by the speech recognizer implemented using TMS320VC5510 DSK. In addition, as for implementation, since TMS320VC5510 DSP is a fixed-point device, we represent efficient realization of HMM algorithm using fixed-point arithmetic.

  • PDF

Development of an Autonomous Mobile Robot with the Function of Teaching a Moving Path by Speech and Avoiding a Collision (음성에 의한 경로교시 기능과 충돌회피 기능을 갖춘 자율이동로봇의 개발)

  • Park, Min-Gyu;Lee, Min-Cheol;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.189-197
    • /
    • 2000
  • This paper addresses that the autonomous mobile robot with the function of teaching a moving path by speech and avoiding a collision is developed. The use of human speech as the teaching method provides more convenient user-interface for a mobile robot. In speech recognition system a speech recognition algorithm using neural is proposed to recognize Korean syllable. For the safe navigation the autonomous mobile robot needs abilities to recognize a surrounding environment and to avoid collision with obstacles. To obtain the distance from the mobile robot to the various obstacles in surrounding environment ultrasonic sensors is used. By the navigation algorithm the robot forecasts the collision possibility with obstacles and modifies a moving path if it detects a dangerous obstacle.

  • PDF

A study on the interactive speech recognition mobile robot (대화형 음성인식 이동로봇에 관한 연구)

  • 이재영;윤석현;홍광석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.97-105
    • /
    • 1996
  • This paper is a study on the implementation of speech recognition mobile robot to which the interactive speech recognition techniques is applied. The speech command uttered the sentential connected word and is asserted through the wireless mic system. This speech signal transferred LPC-cepstrum and shorttime energy which are computed from the received signal on the DSP board to notebook PC. In notebook PC, DP matching technique is used for recognizer and the recognition results are transferred to the motor control unit which output pulse signals corresponding to the recognized command and drive the stepping motor. Grammar network applied to reduce the recognition speed of the recogniger, so that real time recognition is realized. The misrecognized command is revised by interface revision through the conversation with mobile robot. Therefore, user can move the mobile robot to the direction which user wants.

  • PDF

Real-Time Implementation of Wireless Remote Control of Mobile Robot Based-on Speech Recognition Command (음성명령에 의한 모바일로봇의 실시간 무선원격 제어 실현)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.207-213
    • /
    • 2011
  • In this paper, we present a study on the real-time implementation of mobile robot to which the interactive voice recognition technique is applied. The speech command utters the sentential connected word and asserted through the wireless remote control system. We implement an automatic distance speech command recognition system for voice-enabled services interactively. We construct a baseline automatic speech command recognition system, where acoustic models are trained from speech utterances spoken by a microphone. In order to improve the performance of the baseline automatic speech recognition system, the acoustic models are adapted to adjust the spectral characteristics of speech according to different microphones and the environmental mismatches between cross talking and distance speech. We illustrate the performance of the developed speech recognition system by experiments. As a result, it is illustrated that the average rates of proposed speech recognition system shows about 95% above.

A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command (음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구)

  • Jo, Sang Young;Kim, Min Sung;Yang, Jun Suk;Koo, Young Mok;Jung, Yang Geun;Han, Sung Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Development of an Autonomous Mobile Robot with Functions of Speech Recognition and Collision Avoidance

  • Park, Min-Gyu;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.475-475
    • /
    • 2000
  • This paper describes the construction of an autonomous mobile robot with functions of collision avoidance and speech recognition that is used for teaching path of the robot. The human voice as a teaching method provides more convenient user-interface to mobile robot. For safe navigation, the autonomous mobile robot needs abilities to recognize surrounding environment and avoid collision. We use u1trasonic sensors to obtain the distance from the mobile robot to the various obstacles. By navigation algorithm, the robot forecasts the possibility of collision with obstacles and modifies a path if it detects dangerous obstacles. For these functions, the robot system is composed of four separated control modules, which are a speech recognition module, a servo motor control module, an ultrasonic sensor module, and a main control module. These modules are integrated by CAN(controller area network) in order to provide real-time communication.

  • PDF

Robust End Point Detection for Robot Speech Recognition Using Double Talk Detection (음성인식 로봇을 위한 동시통화검출 기반의 강인한 음성 끝점 검출)

  • Moon, Sung-Kyu;Park, Jin-Soo;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.161-169
    • /
    • 2012
  • This paper presents a robust speech end-point detector using double talk detection in echoic conditioned speech recognition robot. The proposed method consists of combining conventional end-point detector result and double talk detector result. We have tested the proposed method in isolated word recognition system under echoic conditioned environment. As a result, the proposed algorithm shows superior performance of 30 % to the available techniques in the points of speech recognition rates.

Integrated System of Mobile Manipulator with Speech Recognition and Deep Learning-based Object Detection (음성인식과 딥러닝 기반 객체 인식 기술이 접목된 모바일 매니퓰레이터 통합 시스템)

  • Jang, Dongyeol;Yoo, Seungryeol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.270-275
    • /
    • 2021
  • Most of the initial forms of cooperative robots were intended to repeat simple tasks in a given space. So, they showed no significant difference from industrial robots. However, research for improving worker's productivity and supplementing human's limited working hours is expanding. Also, there have been active attempts to use it as a service robot by applying AI technology. In line with these social changes, we produced a mobile manipulator that can improve the worker's efficiency and completely replace one person. First, we combined cooperative robot with mobile robot. Second, we applied speech recognition technology and deep learning based object detection. Finally, we integrated all the systems by ROS (robot operating system). This system can communicate with workers by voice and drive autonomously and perform the Pick & Place task.