• Title/Summary/Keyword: Spent Fuel Management

Search Result 156, Processing Time 0.026 seconds

The relationship between public acceptance of nuclear power generation and spent nuclear fuel reuse: Implications for promotion of spent nuclear fuel reuse and public engagement

  • Roh, Seungkook;Kim, Dongwook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2062-2066
    • /
    • 2022
  • Nuclear energy sources are indispensable in cost effectively achieving carbon neutral economy, where public opinion is critical to adoption as the consequences of nuclear accident can be catastrophic. In this context, discussion on spent nuclear fuel is a prerequisite to expanding nuclear energy, as it leads to the issue of radioactive waste disposal. Given the dearth of study on spent nuclear fuel public acceptance, we use text mining and big data analysis on the news article and public comments data on Naver news portal to identify the Korean public opinion on spent nuclear fuel. We identify that the Korean public is more interested in the nuclear energy policy than spent nuclear fuel itself and that the alternative energy sources affect the position towards spent nuclear fuel. We recommend relating spent nuclear fuel issue with nuclear energy policy and environmental issues of alternative energy sources to further promote spent nuclear fuel.

The information system concept for thermal monitoring of a spent nuclear fuel storage container

  • Svitlana Alyokhina
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3898-3906
    • /
    • 2023
  • The paper notes that the most common way of handling spent nuclear fuel (SNF) of power reactors is its temporary long-term dry storage. At the same time, the operation of the dry spent fuel storage facilities almost never use the modern capabilities of information systems in safety control and collecting information for the next studies under implementation of aging management programs. The author proposes a structure of an information system that can be implemented in a dry spent fuel storage facility with ventilated storage containers. To control the thermal component of spent fuel storage safety, a database structure has been developed, which contains 5 tables. An algorithm for monitoring the thermal state of spent fuel was created for the proposed information system, which is based on the comparison of measured and forecast values of the safety criterion, in which the level of heating the ventilation air temperature was chosen. Predictive values of the safety criterion are obtained on the basis of previously published studies. The proposed algorithm is an implementation of the information function of the system. The proposed information system can be used for effective thermal monitoring and collecting information for the next studies under the implementation of aging management programs for spent fuel storage equipment, permanent control of spent fuel storage safety, staff training, etc.

Spent fuel characterization analysis using various nuclear data libraries

  • Calic, Dusan;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3260-3271
    • /
    • 2022
  • Experience shows that the solution to waste management in any national programme is lengthy and burdened with uncertainties. There are several uncertainties that contribute to the costs associated with spent fuel management. In this work, we have analysed the impact of the current nuclear data on the isotopic composition of the spent fuel and consequently their influence on the main spent fuel observables such as decay heat, activity, neutron multiplication factor, and neutron and photon source terms. Nuclear libraries based on the most general nuclear data ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0 and JEFF-3.3 are considered. A typical NPP Krško fuel assembly is analysed using the Monte Carlo code Serpent 2. The analysis considers burnup of up to 60 GWd/tU and cooling times of up to 100 years. The comparison of results showed significant differences, which should be taken into account when selecting the library and evaluating the uncertainty in determining the characteristics of the spent fuel.

iKSNF, the Control Tower for the R&D Program of SNF Storage and Disposal

  • Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.255-258
    • /
    • 2022
  • Three government bodies, that is, the Ministry of Science and ICT (MSIT), Ministry of Trade, Industry, and Energy (MOTIE), and Nuclear Safety and Security (NSSC), jointly established the Institute for Korea Spent Nuclear Fuel (iKSNF) in December 2020 to secure the management technologies for spent nuclear fuel (SNF). The objective of iKSNF is to successfully conduct the long-term research and development program of the 「Development of Core Technologies to Ensure Safety of Spent Nuclear Fuel Storage and Disposal System」. Our program, known as the first multi-ministry program in the nuclear field of Korea, mainly focuses on developing core technologies required for the long-term management of SNF, including those for safe storage and deep geological disposal of SNF. The program comprises three subprograms and seven key projects covering the storage, disposal, and regulatory sectors of SNF management. Our program will last from 2021 through 2029, with a budget of approximately four billion USD sponsored by MSIT, MOTIE, and NSSC.

Review of Aging Management for Concrete Silo Dry Storage Systems

  • Donghee Lee;Sunghwan Chung;Yongdeog Kim;Taehyung Na
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.531-541
    • /
    • 2023
  • The Wolsong Nuclear Power Plant (NPP) operates an on-site spent fuel dry storage facility using concrete silo and vertical module systems. This facility must be safely maintained until the spent nuclear fuel (SNF) is transferred to an external interim or final disposal facility, aligning with national policies on spent nuclear fuel management. The concrete silo system, operational since 1992, requires an aging management review for its long-term operation and potential license renewal. This involves comparing aging management programs of different dry storage systems against the U.S. NRC's guidelines for license renewal of spent nuclear fuel dry storage facilities and the U.S. DOE's program for long-term storage. Based on this comparison, a specific aging management program for the silo system was developed. Furthermore, the facility's current practices-periodic checks of surface dose rate, contamination, weld integrity, leakage, surface and groundwater, cumulative dose, and concrete structure-were evaluated for their suitability in managing the silo system's aging. Based on this review, several improvements were proposed.

CONSIDERATIONS REGARDING ROK SPENT NUCLEAR FUEL MANAGEMENT OPTIONS

  • Braun, Chaim;Forrest, Robert
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.427-438
    • /
    • 2013
  • In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U.S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U.S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R&D project to be conducted by U.S. and ROK scientists. One leading to the development of a demonstration centralized away-fromreactors spent fuel storage facility. The other involve further R&D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper.

CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

  • Park, Jong-Youl;Shim, Moon-Soo;Lee, Jong-Hyeon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.875-882
    • /
    • 2014
  • In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU) reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

Development of the Interface Module for an Effective Application of a Digital Mockup

  • Song, Tai-Gil;Kim, Sung-Hyun;Lim, Gwang-Mook;Yoon, Ji-Sup;Lee, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2407-2409
    • /
    • 2005
  • As the cumulative amount of spent fuel increases, the reliable and effective management of the spent fuel has become a world-wide mission. For this mission, KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Conventional approach to the development of the process and the remote operation technology is to fabricate the process equipment on the same scale as the real environment and demonstrate the remote handling operation using simulated fuel called a mock-up test. But this mock-up test is expensive and time consuming, since the design may need to be modified and the equipment fabricated again to account for the problems found during a testing. To deal with this problem, we developed a digital mockup for the ACP. Also, for an effective utilization of the digital mockup, we developed user interface modules such as the data acquisition and display module and the external input device interface module. The result of this implementation shows that a continuous motion of the manipulator using the external device interface can be represented easily and the information display screens responded well to the simulation situation.

  • PDF

Technology Trends in Spent Nuclear Fuel Cask and Dry Storage (사용후핵연료 운반용기 및 건식저장 기술 동향)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Yeong Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

Numerical Analysis of Heat Transfer and Solidification in the Continuous Casting Process of Metallic Uranium Rod (금속 우라늄봉의 연속주조공정에 대한 열전달 및 응고해석)

  • Lee, Ju-Chan;Lee, Yoon-Sang;Oh, Seung-Chul;Shin, Young-Joon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • Continuous casting equipment was designed to cast the metallic uranium rods, and a thermal analysis was carried out to calculate the temperature and solidification profiles. Fluid flow and heat transfer analysis model including the effects of phase change was used to simulate the continuous casting process by finite volume method. In the design of continuous casting equipment, the casting speed, pouring temperature and cooling conditions should be considered as significant factors. In this study, the effects of casting speed, pouring temperature, and air gap between the uranium and mold were investigate. The results represented that the temperature and solidification profiles of continuous casting equipment varied with the casting speed, pouring temperature, and air gap.

  • PDF