• Title/Summary/Keyword: Spent catalyst

Search Result 88, Processing Time 0.028 seconds

Reuse of Spent FCC Catalyst for Removing Trace Olefins from Aromatics

  • Pu, Xin;Luan, Jin-Ning;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2642-2646
    • /
    • 2012
  • Pretreatment of spent FCC catalyst and its application in remove trace olefins in aromatics were investigated in this research. The most effective pretreatment route of spent FCC catalyst was calcining at $700^{\circ}C$ for 1 h, washing with 5% oxalic acid solution in ultrasonic reactor and dried. Treated spent FCC catalyst was modified with metal halides, then to prepare catalyst to remove trace olefins in aromatics. X-ray diffraction, Pyridine-FTIR, $N_2$ adsorption-desorption and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to investigate the pretreatment process. The result showed that the performance of the treated spent FCC catalyst was much greater than that of the spent FCC catalyst, which indicted the possibility and improvement of this research.

Toluene Oxidation over Spent Zeolite Catalyst (폐제올라이트 촉매를 이용한 톨루엔 산화반응)

  • Song, Min-Young;Park, Young-Kwon;Park, Sung-Hoon;Jeon, Jong-Ki;Ko, Young-Soo;Jung, Kyeong-Youl;Yim, Jin-Heong;Sohn, Jung-Min
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.271-274
    • /
    • 2008
  • In this work, the feasibility of spent zeolite catalyst for reusing as a support was investigated in catalytic odor removal reaction. As a model reaction for odor removal, toluene was selected as a reactant. 10wt% Cu was impregnated on spent HZSM-5 catalyst and spent FCC catalyst. The catalytic activity of the spent HZSM-S was higher than that of spent FCC catalyst in toluene oxidation. This was due to the fact that the surface area of spent HZSM-S was higher than that of spent FCC catalyst. These results may suggest that spent HZSM-S can be reused as a cheap catalyst for toluene removal.

  • PDF

Study of using Waste Industrial Catalyst for the Removal of Harmful Organic Compounds (유해 유기화합물의 제거를 위한 폐 산업용 촉매의 이용에 관한 연구)

  • Seo, Seong-Gyu;Kim, Sang-Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.663-670
    • /
    • 2004
  • The catalytic oxidation of benzene, toluene and xylene over a spent industrial catalyst (Pd-based) was investigated in a fixed bed flow reactor system. According to the priming condition, the properties of a spent Pd-based catalyst were characterized by XRD(X-ray diffraction). BET(Brunauer-Emmett-Teller) and ICP(Inductively coupled plasma). When air was used as a primer, optimum priming temperature was found to be 200$^{\circ}C$, and the catalytic activity decreased as the priming temperature increased. When a spent Pd-based catalyst primed with air at 200$^{\circ}C$ was re-treated with hydrogen at 200$^{\circ}C$, 300$^{\circ}C$ or 400$^{\circ}C$, respectively, the catalytic activity increased and thermal effect were negligible. $HNO_3$ aqueous solution priming resulted in slight decrease of the catalytic activity, with little effects on $HNO_3$ concentrations. The activity of a spent Pd-based catalyst with respect to VOC molecule was observed to follow sequence: xylene> toluene> benzene. Benzene. toluene and xylene could be removed to almost 100% by a spent Pd-based catalyst primed with hydrogen.

A study on the recovery of chromium from metal-plating wastewater with spent catalyst (폐산화철촉매에 의한 도금폐수중 크롬이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • A large tons of spent iron oxide catalyst come from the Styrene Monomer(SM) production company. It is caused to pollute the land and underground water due to the high alkali contents in the catalyst by burying them in the landfill. In order to recycle the spent catalyst, a basic study on the recovery of chromium ion from metal plating wastewater with the spent catalyst was carried out. The iron oxide catalyst adsorbed physically $Cr^{+6}$ in the lower pH 3.0, that is the isoelectric point of the spent catalyst. It was found that the iron oxide catalyst reduced the $Cr^{+6}$ into Cr+3 by the oxidation of ferrous ion into ferric ion on the surface of catalyst, and precipitated as $Cr(OH)_3$ in the higher than pH 3.0. The $Cr^{+6}$ was recovered 2.0∼2.3g/L catalyst in the range of pH 0.5∼2.0, but it was recovered 1.5 g/L catalyst at pH 3.0 of wastewater. The recovery of Cr was increased as the higher concentration in the continuous process, but the flowrates were nearly affected on the Cr recovery.

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst (폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율)

  • Na, Woo-jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.876-885
    • /
    • 2018
  • Utilization of spent RHDM(Residue Hydrodemetallation) catalyst as de-NOx SCR(Selective Catalytic Reduction) catalyst was studied by conducting by heptane cleaning and high-temperature roasting for removal of deposited carbon and sulfur. Followed by oxalic acid leaching was carried out for controlling excess vanadium deposited on spent RHDM catalyst in search of appropriate vanadium loadings for the best SCR performance and the leaching conditions are 5~15wt% concentration of oxalic acid and 5min leaching time at $50^{\circ}C$ with the ultra-sonic agitator. De-NOx activities of prepared and commercial SCR catalyst were measured by the atmospheric SCR catalyst performance test unit, their residual content were also carried out by ICP, C&S Analysis and XRF. Acid leaching (AL-10) catalyst showed the highest de-NOx efficiency of all prepared catalysts and the de-NOx efficiency over wash coated catalyst(WC-AL-10) was equivalent to that of commercial SCR catalyst. Therefore the possibility of using as SCR catalyst for each application by adjusting treatment conditions of spent RHDM catalyst was found and further research will be needed in detail for the its commercialization.

Regeneration of Spent Nickel Catalyst for Hydrogenation (수소화 반응용 니켈 폐촉매의 재생)

  • 전종기;박영권;김주식
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Nickel oxide was recovered through roasting of a spent catalyst for hydrogenation reaction. Nickel on Kieselguhr catalysts were prepared by a precipitation method after a treatment of the recovered-nickel oxide with an acid. Effects of roasting temperature of the spent catalyst on recovery of nickel oxide was investigated. Most of nickel oxide could be recovered through roasting of the spent catalyst at $1000^{\circ}C$. In regeneration of catalysts by the precipitation method after the treatment of nickel oxide with an acid, the effect of promoter, precipitation condition and reduction condition on catalytic performance in vegetable oil hydrogenation were investigated. The addition of CaO or $Ce_2$$O_3$ resulted in an increase of catalytic activity.

Recovery of Precious Metals from Spent Catalyst Generated in Domestic Petrochemical Industry (한내 석유화학 폐촉매로부터 귀금속의 회수 연구)

  • 김준수;박형규;이후인;김성돈;김철주
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Recovery of precious metal values from petrochemical spent catalyst is important from the viewpoint of environmental protection and resource recycling. Two types of spent catalysts were used in this study. One used in the manufacture of ethylene contains 0.3% Pd in the alumina substrate. The other used in oil refining contains 0.3% Pt and 0.3% Re. Both spent catalysts are roasted to remove volatile matters as carbon and sulfur. Then, metallic Pd powder from Pd spent catalyst is obtained in the course of grinding, hydrochloric acid or aqua regia leaching and cementation with iron. For the recovery of Pt and Re from Pt-Re spent catalyst, Pt and Re are leached with either HCI or aqua regia, first. Metallic Pt powder is recovered from the leach solution by cementation with Fe powder. Re in sulfide form is precipitated by the addition of sodium sulfide to the solution obtained after Pt recovery. It is found that 6N HCI can be successfully used as leaching agent for both types of spent catalyst. 6N HCI is considered to be better than aqua regia in consideration of reagent and equipment cost.

  • PDF

Recovery of Palladium (Pd) from Spent Catalyst by Dry and Wet Method and Re-preparation of Pd/C Catalyst from Recovered Pd (폐촉매로부터 Pd회수 및 이를 이용한 Pd/C 촉매 재제조 기술 개발)

  • Kim, Ji Sun;Kwon, Ji Soo;Baek, Jae Ho;Lee, Man sig
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.376-381
    • /
    • 2018
  • The purpose of this study is to investigate and optimize an effectiveness process for the recovery of Pd from the spent Pd/C catalyst by the process of hydrogenation of maleic anhydride over Pd/C. Pd solution recovered from Pd/C catalyst was used to prepare Pd/C catalysts. Their characteristics were compared to those of Pd/C catalyst prepared by using a reagent grade precursor solution. Pd in the spent catalyst was leached by the modified process with dry and wet methods to obtain the high recovery ratio of Pd. The burn-out of carbon in the spent Pd/C catalyst was carried out in the rage of $600-900^{\circ}C$. Pd content of carbonized catalyst was confirmed by XRF and ICP. Pd was extracted from carbonized spent catalysts with acid solutions of 1,2 and 4 M HCl at a leaching temperature of $90^{\circ}C$ for 2 h. The high recovery ratio of Pd was shown as 92.4% that leached in 4 M HCl. Also Pd/C catalysts were prepared by using the leached solution and the reagent grade of $H_2PdCl_4$ as a precursor solution and the characteristics were analyzed by XRD, CO-chemisorption and FE-TEM. As a result, the dispersion of the catalyst prepared by using the leached solution was 34.6%, which was found to be equal to or more than that of the Pd/C catalyst prepared by the reagent grade precursor solution.

A Study on the Recovery of Zinc ion from Metal-Plating Wastewater by Using Spent Catalyst (酸化鐵 廢觸媒에 의한 도금폐수중 아연이온 回收에 관한 基礎硏究)

  • 이효숙;오영순;이우철
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.23-28
    • /
    • 2001
  • Zinc ion could be recovered from metal plating wastewater with the spent iron oxide catalyst which was used in the plant of Styrene Monomer(SM) production. The zinc was recovered more than 98.7% at higher than pH 2.0. The saturation magnetization of the spent catalyst is enough high as 59.4 emu/g to apply in the solid-liquid separation after treating the wastewater. The mechanism of zinc recovery with the iron oxide catalyst could be a electro-chemical adsorption at pH 3.0~8.5, and a precipitation as $Zn(OH)_2$ at higher than pH 8.5.

  • PDF