• Title/Summary/Keyword: Spent fuel pool

Search Result 77, Processing Time 0.025 seconds

A STUDY FOR DOSE DISTRIBUTION IN SPENT FUEL STORAGE POOL INDUCED BY NEUTRON AND GAMMA-RAY EMITTED IN SPENT FUELS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • With the reactor operation conditions - 4.3 wt% $^{235}U$ initial enrichment, burn-up 55,000 MWd/MTU, average power 34 MW/MTU for three periods burned time for 539.2 days per period and cooling time for 100 hours after shut down, to set up the condition to determine the minimum height (depth) of spent fuel storage pool to shut off the radiation out of the spent fuel storage pool and to store spent fuels safely, the dose rate on the specific position directed to the surface of spent fuel storage pool induced by the neutron and gamma-ray from spent fuels are evaluated. The length of spent fuel is 381 cm, and as the result of evaluation on each position from the top of spent fuel to the surface of spent fuel storage pool, it is difficult for neutrons from spent fuels to pass through the water layer of maximum 219 cm (600 cm from the floor of spent fuel storage pool) and 419 cm (800 cm from the floor of spent fuel storage pool) for gamma-ray. Therefore, neutron and gamma-ray from spent fuels can pass through below 419 cm (800 cm from the floor) water layer directed to the surface of spent fuel storage pool.

Systems Engineering Process Approach to the Probabilistic Safety Assessment for a Spent Fuel Pool of a Nuclear Power Plant (사용후핵연료저장조의 확률론적안전성평가 수행을 위한 시스템엔지니어링 프로세스 적용 연구)

  • Choi, Jin Tae;Cha, Woo Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.82-90
    • /
    • 2021
  • The spent fuel pool (SFP) of a nuclear power plant functions to store the spent fuel. The spent fuel pool is designed to properly remove the decay heat generated from the spent fuel. If the cooling function is lost and proper operator action is not taken, the spent fuel in the storage pool can be damaged. Probabilistic safety assessment (PSA) is a safety evaluation method that can evaluate the risk of a large and complex system. So far, the probabilistic safety assessment of nuclear power plants has been mainly performed on the reactor. This study defined the requirements and the functional architecture for the probabilistic safety assessment of the spent fuel pool (SFP-PSA) by applying the systems engineering process. And, a systematic and efficient methodology was defined according to the architecture.

Analysis of loss of cooling accident in VVER-1000/V446 spent fuel pool using RELAP5 and MELCOR codes

  • Seyed Khalil Mousavian;Amir Saeed Shirani;Francesco D'Auria
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3102-3113
    • /
    • 2023
  • Following the Fukushima nuclear disaster, the simulation of accidents in the spent fuel pool has become more noticeable. Despite the low amount of decay heat power, the consequences of the accidents in a spent fuel pool (SFP) can be severe due to the high content of long-lived radionuclides and lack of protection by the pressure vessel. In this study, the loss-of-cooling accident (LOFA) for the VVER-1000/V446 spent fuel pool is simulated by employing RELAP5 and MELCOR 1.8.6 as the best estimate and severe accident analysis codes, respectively. For two cases with different total power levels, decay heat of spent fuels is calculated by ORIGEN-II code. For modeling SFP of a VVER-1000, a qualified nodalizations are considered in both codes. During LOFA in SFP, the key sequences such as heating up of the pool water, boiling and reducing the water level, uncovering the spent fuels, increasing the temperature of the spent fuels, starting oxidation process (generating Hydrogen and extra power), the onset of fuel melting, and finally releasing radionuclides are studied for both cases. The obtained results show a reasonable consistency between the RELAP5 and MELCOR codes, especially before starting the oxidation process.

Theoretical Estimation of the Impact Velocity during the PWR Spent Fuel Drop in Water Condition (경수로 사용후핵연료 수중 낙하 충돌 속도의 이론적 평가)

  • Kwon, Oh Joon;Park, Nam Gyu;Lee, Seong Ki;Kim, Jae Ik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The spent fuel stored in the pool is vulnerable to external impacts, since the severe reactor conditions degrade the structural integrity of the fuel. Therefore an accident during shipping and handling should be considered. In an extreme case, the fuel assembly drop can be happened accidentally during handling the nuclear fuel in the spent fuel pool. The rod failure during such drop accident can be evaluated by calculating the impact force acting on the fuel assembly at the bottom of the spent fuel pool. The impact force can be evaluated with the impact velocity at the bottom of the spent fuel pool. Since fuel rods occupies most of weight and volume of a nuclear fuel assembly, the information of the rods are important to estimate the hydraulic resistance force. In this study, the hydraulic force acting on the $3{\times}3$ short rod bundle model during the drop accident is calculated, and the result is verified by comparing the numerical simulations. The methodology suggested by this study is expected to be useful for evaluating the integrity of the spent fuel.

Development of risk assessment framework and the case study for a spent fuel pool of a nuclear power plant

  • Choi, Jintae;Seok, Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1127-1133
    • /
    • 2021
  • A Spent Fuel Pool (SFP) is designed to store spent fuel assemblies in the pool. And, a SFP cooling and cleanup system cools the SFP coolant through a heat exchanger which exchanges heat with component cooling water. If the cooling system fails or interfacing pipe (e.g., suction or discharge pipe) breaks, the cooling function may be lost, probably leading to fuel damage. In order to prevent such an incident, it is required to properly cool the spent fuel assemblies in the SFP by either recovering the cooling system or injecting water into the SFP. Probabilistic safety assessment (PSA) is a good tool to assess the SFP risk when an initiating event for the SFP occurs. Since PSA has been focused on reactor-side so far, it is required to study on the framework of PSA approach for SFP and identify the key factors in terms of fuel damage frequency (FDF) through a case study. In this study, therefore, a case study of SFP-PSA on the basis of design information of APR-1400 has been conducted quantitatively, and several sensitivity analyses have been conducted to understand the impact of the key factors on FDF.

Experimental validation of the seismic analysis methodology for free-standing spent fuel racks

  • Merino, Alberto Gonzalez;Pena, Luis Costas de la;Gonzalez, Arturo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.884-893
    • /
    • 2019
  • Spent fuel racks are steel structures used in the storage of the spent fuel removed from the nuclear power reactor. Rack units are submerged in the depths of the spent fuel pool to keep the fuel cool. Their free-standing design isolates their bases from the pool floor reducing structural stresses in case of seismic event. However, these singular features complicate their seismic analysis which involves a transient dynamic response with geometrical nonlinearities and fluid-structure interactions. An accurate estimation of the response is essential to achieve a safe pool layout and a reliable structural design. An analysis methodology based on the hydrodynamic mass concept and implicit integration algorithms was developed ad-hoc, but some dispersion of results still remains. In order to validate the analysis methodology, vibration tests are carried out on a reduced scale mock-up of a 2-rack system. The two rack mockups are submerged in free-standing conditions inside a rigid pool tank loaded with fake fuel assemblies and subjected to accelerations on a unidirectional shaking table. This article compares the experimental data with the numerical outputs of a finite element model built in ANSYS Mechanical. The in-phase motion of both units is highlighted and the water coupling effect is detailed. Results show a good agreement validating the methodology.

Impact of PSI-KIT Nitriding model on hypothetical Spent Fuel Pool accident simulation

  • Mateusz Malicki;Terttaliisa Lind
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2504-2515
    • /
    • 2023
  • In past years the Paul Scherrer Institute (PSI, Switzerland) and the Karlsruhe Institue of Technology (KIT, Germany)) collaborated to develop a model to account for the active role of nitrogen in the air oxidation of a Zircalloy cladding. The "PSI-KIT Nitriding Model for Zirconium based Fuel Cladding" model was implemented at PSI into PSI-MELCOR 1.8.6. In order to make a preliminary evaluation of the effect of the new model on the evolution of full-scale spent fuel pool accidents, one spent fuel pool event was analyzed using the PSI research version of PSI-MELCOR 1.8.6, which includes the nitriding model. To adapt an existing input deck for the calculations, a sensitivity study was conducted to find an optimal nodalization for the analyses. The nitriding model results were compared to those calculated with the MELCOR 1.8.6-PSI without the new nitriding model. The results demonstrate the effect of the nitriding reactions in spent fuel pool accident progression. Moreover, they confirm the impact of ZrN formation during cladding oxidation in air when the oxidation reactions lead to oxygen starvation inside the fuel assemblies. The nitriding reaction led to higher chemical heat generation during the accident and to an earlier failure of the cladding than when the effect of nitrogen reactions was not considered. It should be noted that the nitriding model, as implemented in the PSI version of MELCOR 1.8.6 has not yet been conclusively validated. Thereby the results presented in this paper should be treated as a preliminary demonstration of the capabilities of the model.

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

Sensitivity studies in spent fuel pool criticality safety analysis for APR-1400 nuclear power plants

  • Al Awad, Abdulrahman S.;Habashy, Abdalla;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.709-716
    • /
    • 2018
  • A criticality safety analysis was performed for the APR-1400 spent fuel pool region-II to ensure the safe storage of spent fuel, with credit taken for depletion and in-rack neutron absorbers (Metamic panels). PLUS7 fuel assembly was modeled using TRITON-NEWT of SCALE-6.1. The burnup-dependent cross-section library was generated under limiting core-operating conditions with 5%-w U-235 initial enrichment. MCNP5 was used to evaluate the neutron multiplication factor in an infinite array of rack cells with the axially nonuniformly burnt PLUS7 assemblies under normal, abnormal, and accident conditions; including all biases and uncertainties. The main purpose of this study is to investigate reactivity variations due to the critical depletion and reactor operation parameters. The approach, assumptions, and modeling methods were verified by analyzing the contents of the most important fissile and the associated reactivity effects. The Nuclear Regulatory Commission (NRC) guidance on k-eff being less than 1.0 for spent fuel pools filled with unborated water was the main criterion used in this study. It was found that assemblies with 49.0 GWd/MTU and 5.0 w/o U-235 initial enrichment loaded in Region-II satisfy this criterion. Moreover, it was found that the end effect resulted in a positive bias, thus ensuring its consideration.

사용후핵연료 저장 시설의 중대사고 안전성 검토

  • Sin, Tae-Myeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.331-336
    • /
    • 2011
  • When the Fukushima nuclear power plant accident occurred in March, a hydrogen explosion in the reactor building at the 4th unit of Fukushima plants lead to a big surprise because the full core of the unit 4 reactor had been moved and stored underwater at the spent nuclear fuel storage pool for periodic maintenance. It was because the potential criticality in the fuel storage pool by coolant loss may yield more severe situation than the similar accident happened inside the reactor vessel. In the paper, the safety state of the spent fuel storage pool and rack structures of the domestic nuclear plants would be reviewed and compared with the Fukushima plant case by engineering viewpoint of potential severe accidents.

  • PDF