• Title/Summary/Keyword: Spraying time

Search Result 226, Processing Time 0.026 seconds

Development of Real-time Precision Spraying System Using Machine Vision and DGPS (기계시각과 DGPS를 이용한 실시간 정밀방제 시스템 개발)

  • 조성인;정재연;김유용;남기찬;이중용
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.143-150
    • /
    • 2002
  • Several researches for site-specific weed control have tried to increase accuracy of weed detection with machine vision technique. However, there is a problem which needs substantial time to perform site-specific spraying. Therefore, new technology for real-time precision spraying system is needed. This research was executed to develope the new technology to estimate weed density and size in real time, and to conduct a real-time site-specific spraying. It would effectively reduce herbicide amounts applied for a crop field. The real-time precision spraying system consisted of a Differential Global Positioning System (DGPS) with an error of 2 cm, a machine vision system, a geomagnetic sensor for correction of view point of CCD camera and an automatic sprayer with separately controlled nozzle. The weed density was calculated with comparison between position information and a pre-designed electronic map. The position information was obtained in real time using the DGPS and the machine vision. The electronic map contained a position database of crops automatically constructed when seeding. The developed system was tested on an experimental field of Seoul National University. Success rate of the spraying was about 61%.

A prediction of mold temperature distribution and lifetime with different spray process of mold release agent in high pressure diecasting mold using computer simulation (컴퓨터 시뮬레이션을 이용한 고압다이캐스팅 금형의 이형제 분사공정에 따른 금형온도분포 및 금형수명 예측)

  • Kim, Dong-Hyun;Yoon, Sang-Il;Chang, Dae-Jung
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.49-53
    • /
    • 2019
  • The temperature distribution and lifetime of molds were predicted by computer simulation analysis with various spraying and blowing process of high pressure die casting. After varying the spraying angle and time, the mold temperature, heat exchange and mold life were predicted. As the spraying angle increases, the maximum temperature of the mold decreases, which is because the spraying area increases and the heat exchange with the mold increases. Heat exchange occurs more actively in the blowing process than in the spraying process. This is because the cooling is not performed due to the steam generation. When the spraying angle is 50 degree, the minimum life of the mold is analyzed 200 times. After adjusting the blowing time from 5s to 3s, the minimum lifetime of the mold has been increased almost twice.

Effect of Spraying Conditions in Flame Spraying of Ni-Cr Base Self Fluxing Alloy on Mild Steel (가스용사에 의한 Ni-Cr 기 자용성합금 용사 의 특성에 미치는 용사조건의 영향)

  • 배종규;박경채;정인상
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.26-42
    • /
    • 1989
  • It has between investigated that the optimum spaying conditions, such as, spraying distance, fusing temperature and fusing time, ect, in a Ni-cr base self fluxing alloy sprayed on the mild steel substrate by oxygen-acetylenc flame spraying. Sprayed specimens on various conditions were fuused in a vacuum furnace and the results were as follows. The optimum spraying condition for excellent coating layer are obtained under spraying distances, fusing temperature and fusing and time ; 180~240mm,1050~110$0^{\circ}C$and 15~30min, respectively. The adhesive strength and surface hurface hardness of the as sprayed specimens were very low by mechanical bonding becaus of the diffusion layer during process. The carbides and borides and formed in the sprayed coating layer and densification of the layer was resulted from the elimination of pores and oxides. The hardness of sprayed coating layer, particularly in the high temperature, was superior to ordinary tool steels.

  • PDF

An Experimental Study on the Spray Characteristics by Twin-Fluid Atomizer for Wide Band Spray (광폭면 분무를 위한 2유체 노즐의 분무 특성에 관한 연구)

  • Lee, Joong-Soon
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.212-219
    • /
    • 2008
  • To develop the twin-fluid atomizer having the excellent performance of painting, the spray characteristics of how a wide area can be painted efficiently by one time spraying were studied in this paper. Spray phenomena are affected by the many factors determining the spray field such as the spraying pressure of gas, the spraying pressure and viscosity of liquid paints, the opening duration of needle valve, the design dimension of nozzle, and so on. As the results of experiments, these factors affecting on spray characteristics were suggested as followings; 1) The optimum spraying pressure of gas was $0.015{\sim}0.02\;kPa$, and the appropriate spraying pressure of liquid paint was 0.01kPa, In these situations, the setting up pressures must be compensated as much as the losing amount of pressure because a decompression occurred when operating valves. 2) The duration of opening the needle valve must be sustained for $1{\sim}2$ seconds to inject gas after spraying the liquid paint. This operating of the needle valve was necessary to avoid the affect on the changing of liquid column length, and to prevent the droplet deposit at the initial time of spraying. 3) The spray tip penetration was gained form the experimental equation, and the effective spraying angle was $85^{\circ}{\pm}5^{\circ}$ just at he appropriate spraying pressure of gas. The distribution of the area sprayed had the variation in $350{\pm}50\;mm$ because of the spraying pressure of gas, the its distance from the spray tip, and the lift of the needle valve.

  • PDF

Development of an Automated Measurement System for Dilution Process and Spraying Amount of Disinfectant

  • Kim, Jung-Chul;Chung, Sun-Ok;Cho, Byoung-Kwan;Chang, Hong-Hee;Kim, Suk;Chang, Dongil
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2013
  • Purpose: The objectives of this study were to develop an automated disinfectant dilution system, and an automated data management system for spraying amount for resolving uncertainty problem. Methods: Proper diluting rate was made by a controlled volume pump for liquid disinfectant and a screw conveyer pump for solid disinfectant. The water capacity of disinfecting system of 400 L was controlled by two water level sensors. The water quantity of water tank was controlled by the signals which were produced by the water level sensors. Signals were processed by Labview Programming, and ON/OFF of solenoid valve that was used for controlling water supplying to water tank, was controlled by SSR. The operating time of pumps for disinfectant was controlled quantitatively. A turbine flowmeter was used for development of automated measurement system for spraying amount of disinfectant. In order to save the flowmeter data and to control the spraying system, a multi-function data logger was used, and it was processed and saved in Excel file by a program developed in this study. Results: Labview 2010 was used for programming to control the automated measurement system for spraying amount of disinfectant. Results showed that the relationship between flowmeter value and time had a significant linear relationship such as 0.99 of $R^2$. Generally, 6.74 L/s of diluted disinfectant is sprayed for a vehicle passing through the disinfection system (about 15 seconds). Test results showed that average error between the measured spraying amount and the flowmeter data was 50 mL, and the range of error was 1.3%. Since the amount and time of spraying could be saved in real-time by using the spreadsheet files which could not be modified arbitrarily, it made possible to judge objectively whether the disinfection spraying was performed or not. Test results of spraying liquid and solid disinfectant showed that the errors between the measured discharge rate and the theoretical one were ranged within 3-4% for various dilution rates. Conclusions: The disinfection system developed would be working accurately. The automated spraying data base management system satisfied the purpose of this study. The automated dilution process system developed in this study could discharge liquid and solid disinfectant with accurate dilution rate, relatively.

The Effect of Maleic Hydrazide Spraying upon the Winter Hardness of Twig of Mulberry Tree (상수지의 내한성 증대에 미치는 억제제 Maleic Hydrazide의 살포효과)

  • 류근섭;오준식
    • Journal of Sericultural and Entomological Science
    • /
    • v.13 no.2
    • /
    • pp.95-97
    • /
    • 1971
  • This study was carried out to investigate the effect of maleic hydrazide upon the winter hardness on leaves spraying after harvesting of autumn rearing season. The results obtained are as follows; 1. Spraying over 0.25% increased starch in all tissues of the twig than that in the not-sprdyed control twig. 2. Spraying time of central district was the middle ten days of september. 3. There were effect on spraying of all the treatment variety Suwon No. 4. 4. Winter hardiness by variety was strong in the order of Suwon No. 4, Gae Ryang Su ban, Il Jire, Rosang.

  • PDF

Influence of LPPS Spraying Parameters on Deposition Efficiency of Zirconia Powder

  • Shi, Jian-Min;Hu, Zhong-Yin;Huang, Jing-Qi;Ding, Chuan-Xian
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.160-165
    • /
    • 1997
  • Yttria stabilized zirconia coating is an attractive material for several engineering applications. In order to produce coatings with consistent and reliable performance it is important to understand the influence of spraying parameters on the coating properties and optimize the spraying parameters. In this paper the low pressure plasma spray(LPPS) deposition of as-received zirconia powder has been investigated using simple one-factor-at-a-time approach. The deposition efficiency was chosen to evaluate the melting characteristics of the as-received zirconia powder. The results obtained indicated that the deposition efficiency of zirconia powder is very sensitive to the spraying parameters such as plasma gas flow rate and ranges from 24% to 57% The microstructure and the phase composition of zirconia coating deposited with the different plasma spraying parameters were also examined by SEM and XRD respectively. The relationship between deposition efficiency and the microstructure of zirconia coating was discussed.

  • PDF

Pest Control Effect using Unmanned Automatic Pesticide Spraying Device in Vegetable Greenhouse (시설채소 온실에서 무인 자동 약제 살포장치를 이용한 해충 방제효과)

  • Lee, Jung Sup;Lee, Jae Han;Bang, Ji Wong;Kim, Jin Hyun;Jang, Hye Sook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.52-59
    • /
    • 2022
  • Pest control treatment was carried out using an unmanned automatic pesticide spraying system that can spray pesticides on crops while moving autonomously to control pests in vegetable greenhouse. As a result of examining the control effect on tomato and strawberry on thrips (Frankliniella occidentalis) and greenhouse whitefly (Trialeurodes vaporariorum) pests, 85.6% of yellow flower thrips were found in tomatoes and 87.5% in strawberries, and 81.7% (tomato) and 80.6% (strawberry) of greenhouse whitefly. In addition, the control effect according to the pesticide treatment method showed a control effect of 81.7% of the chemical spraying treatment by manpower and 83.9% of the automatic moving pesticide spraying treatment (F=22.1, p < 0.001). When comparing the control effect between the two treatment sections, there was no significance, but the automatic transfer spraying treatment showed a 2.2% higher effect. On the other hand, as a result of comparing the spraying time of the drug, the automatic unmanned control sprayer had a spraying time of 5 min/10a, which took about 25 min less than the conventional manpower spraying time of 25-30 min/10a. Based on these results, it was judged that the automatic transfer spraying method could be usefully used for efficient pest control in the facility greenhouse during the peak period of development.

Characterizations of Two-step Matrix Application Procedures for Imaging Mass Spectrometry

  • Shimma, Shuichi
    • Mass Spectrometry Letters
    • /
    • v.6 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • In this paper, I describe the importance of matrix spraying conditions in imaging mass spectrometry (IMS) to obtain successful imaging results. My developed matrix application methodology, which is a "two-step matrix application" sequentially combined with matrix sublimation and spraying matrix solution can provide high reproducibility and high ion yield compared with a conventional direct spraying method. However, insufficient IMS results were obtained occasionally despite the two-step method. Therefore, I wanted to characterize the methodology to continuously provide high quality data. According to my results, the sublimation time was not a strict parameter, and the most important step was the first spraying condition. This means that the extraction conditions from the tissue section and co-crystallization of the matrix were the most important factors.

Formulation of Erythromycin Enteric-coated Pellets (에리스로마이신 장용성 펠렛의 제제 설계)

  • 이승우;박은석;지상철
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 1995
  • Erythromycin was formulated as enteric-coated pellets in order to reduce degradation in stomach and gastromtestmal irritation, and to maximize the absorption in intestine followmg its oral administration. Core pellets were prepared using fluid-bed granulator with two different methods (powder layering and solvent spraying) and enteric-coated with two different coating polymers (HPMCP and Eudragit E30D). Physical characteristics md dissolution rates of core pellets and enteric-coated pellets were evaluated to optimize the formulation. Powder layering method resulted in shorter initial dissolution time than solvent spraying method, but physicochmical properties of the product were worse than solvent spraying method with respect to hardness, ftiability and density. The dissolution rate of the drug was increased with the addition of surfactants, showing concentration-dependence. The scanning electron microscopic observation of pellets revealed significant differences on the surface appearances prepared with solvent spraying method. The core pellet made with powder layering method had crystals on the surface, which resulted in poor physical properties of the pellets. The dissolution profiles of erythromycin pellets coated with HPMCP or Eudragit L30D were close to that of commercially available erythromycin enteric-coated product.

  • PDF