• Title/Summary/Keyword: Spring-Actuated Mechanism

Search Result 12, Processing Time 0.028 seconds

Design of a Spring-Actuated Linkage for Specified Dynamic Responses (규정된 동적응답을 위한 스프링구동 링크기구의 설계)

  • Ahn, K.Y.;Cho, S.S.;Park, W.J.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.476-481
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the energy conservation that the total system energy is constant throughout the operating range of a mechanism, a systematic design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

Improvement of Fatigue-Proof Characteristics of Link Members Under Impact Loadings by a Spring-Actuated Mechanism (스프링구동 메커니즘의 충격 하중을 받는 링크부재의 내피로 특성 향상)

  • 안길영;박상후;이부윤;김원진;오일성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.158-164
    • /
    • 2003
  • The air circuit breaker (ACB) with the spring-actuated mechanism was studied to improve the fatigue-proof characteristics of its link. The low-cycle fatigue fracture phenomenon occurred on the critical link, called h-link, of ACB from the repeated rapid closing and opening operations. To analyze the cause of failure, dynamic FE-analysis on the b-link part of ACB was performed considering tile velocity and acceleration of the links per time as boundary conditions, which were obtained by using ADAMS. Also, the S-N curve obtained by experiments was used to investigate requirement on the fatigue-proof characteristics. Then, to reduce the maximum tensile stress on the h-link, three types of h-link were examined and one of them was selected.

Optimal Design of a Variable-Speed Cam for Power Circuit Breaker (고압 회로차단기의 비등속 회전 캠의 최적설계)

  • Kim, Jun-Hyeong;An, Gil-Yeong;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.47-53
    • /
    • 2001
  • Power Circuit Breaker uses a variable-speed cam mechanism actuated by pre-loaded spring force. This paper presents the optimal design procedure for a variable-speed cam mechanism based on the dynamic model of a complete spring-actuated cam system. The optimal cam is compared with an original cam. Simulation results show that the dynamic behaviors of the designed cam are superior to those of the original cam.

  • PDF

Optimization of the Spring Design Parameters of a Circuit Breaker for Satisfying Specified Dynamic Characteristics (규정된 동적특성을 위한 회로차단기의 스프링 설계변수의 최적화)

  • 안길영;정광영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.132-138
    • /
    • 2004
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. If the type and structure of the linkage system required to the circuit breaker is predetermined, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the energy conservation that the total system energy is constant throughout the operating range of the mechanism, a systematic procedure for optimizing the spring design parameters is developed and applied to the simplified mechanism of a circuit breaker. Then, in order to consider the complex dynamics of the circuit breaker mechanism rather well, the developed procedure is converted to the environment of a multi-body dynamics program ADAMS.

Optimization of the Spring Design Parameters of a Circuit Breaker to Satisfy the Specified Dynamic Characteristics

  • Gil Young;Kwang Young
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • A spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of the electric contacts of a vacuum circuit breaker. If the type of a circuit breaker and the structure of the linkage system are predetermined, then design parameters such as stiffness, free length and attachment points of the spring become the important issues. In this paper, based on the energy conservation, the total system energy is constant throughout the operating range of the mechanism; a systematic procedure to optimize the spring design parameters is developed and applied to a simplified mechanism of a circuit breaker. The developed procedure is converted to the environment of the multi-body dynamics program, ADAMS for an in-depth consideration of the complex dynamics of a circuit breaker mechanism.

Optimal Design of a Circuit Breaker for Satisfying the Specified Dynamic Characteristics (규정된 동특성을 만족하기 위한 회로차단기의 최적설계)

  • Ahn, K.Y.;Cho, S.S.;Oh, I.S.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.859-864
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening and the closing dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the dynamic model of the circuit breaker using a multibody dynamic program ADAMS, a optimal design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

Dynamic Model and Analysis of a Vacuum Circuit Breaker Mechanism for High-Speed Closing and Opening Simulations (고속 개폐 시뮬레이션을 위한 진공 회로차단기의 동적 모델 및 해석)

  • An, Gil-Yeong;Kim, Su-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.163-170
    • /
    • 2002
  • The dynamic model of a high-speed vacuum circuit breaker mechanism with spring-actuated cam and linkage is derived to simulate the high-speed closing and opening operations. Its validation for an analysis of high-speed motion behavior is checked through experiments. The characteristics of the friction on the camshaft are investigated using the nonlinear pendulum experiment. The parameters of the friction model are estimated using the optimization technique. The analysis exhibits that the friction of the pendulum depends on stick-slip, Stribeck effect and viscous damping. Comparing simulation results with actual responses using a high-speed camera, the appropriateness of derived dynamic models for the rapid closing and opening operations is shown. The spring motion, which has much influence on the closing responses, is observed.

Stiffness Analysis in a Redundantly Actuated Four-Bar Mechanism (잉여구동을 지닌 4절 기구에서의 강성효과에 대한 해석)

  • 이병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.846-855
    • /
    • 1994
  • An effective stiffness, analogous to that of a wound spring, can be created by antagonistic redundant actuation of general closed-chain mechanisms. The qualitative and quantitative characteristics of the effective stiffness are investigated through a Four-bar mechanism, and a load distribution method is introduced which simultaneously guarantees the required system motion and the effective stiffness of the Four-bar mechanism. Furthermore, a simulation is performed to understand the inter-relationship among the effective stiffness, the Four-bar geometry, and the actuation effort. Based on this analysis, the Four-bar synthesis problem for effective stiffness generation is discussed.

Design of Shape Memory Alloy Manipulator for Position Control (위치 제어를 위한 SMA(Shape Memory Alloy) 매니퓰레이터 설계)

  • Lee, Seung-Yeol;Yu, Seok-Jong;Yu, Byung-Gab;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.957-962
    • /
    • 2007
  • This paper describes a new mechanism for improving the force of actuators based on shape memory alloys (SMA) by increasing the number at which a coil pattern SMA spring can evenly be heated. This structure accomplishes a high efficient transformation between force and displacement overcoming the main mechanical drawback of shape memory alloys, that being the limit strain. A pantograph manipulator actuated by the introduced new mechanism has been designed for this research. Mechanical structure and driving mechanism of this manipulator are described in detail, and its control algorithm and current amplifier circuit in a position control system are designed.

  • PDF