• Title/Summary/Keyword: Stacked piezoelectric actuator

Search Result 12, Processing Time 0.031 seconds

ELECTROMECHANICAL ANALYSIS OF PIEZOELECTRIC STACK ACTUATOR (적층 압전 액추에이터의 전기-기계적 특성 분석)

  • Ha, Gi Hong;Lee, Soo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.374-378
    • /
    • 2014
  • The piezoelectric materials convert from mechanical energy to electrical energy. The piezoelectric materials are used in various engineering applications such as piezoelectric ultrasonic actuators. Since the piezoelectric coupling characteristics of the actuator systems should be considered at the initial design stage, it is essential to analyze the piezoelectric coupling characteristics of the ultrasonic actuators. In this study, we analyzed the electromechanical characteristics of piezoelectric stacked actuator using the equivalent circuit model with modal mass stiffness parameters. It was compared the admittance of piezoelectric stack actuators with the analytical circuit model and the finite element model. Also, the coupling coefficient of piezoelectric stack actuator was discussed according to the number of stacks of actuators.

  • PDF

Nonlinear Modeling of Piezoelectric Actuators for Scanning Tunneling Microscopy (주사터널링현미경을 위한 압전구동기의 비선형 모델링)

  • 정승배;박준호;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2272-2283
    • /
    • 1994
  • In scanning tunneling microscopy, the piezoelectric actuator is popuilarly used in stacked type as it can provide remarkable positioning resolution and stiffness. The actuator, however, exhibits a considerable amount of hystereic nonlinearity, resulting in losses of overall measuring accuracy when a linear model is used for its control and calibration, In this study, a nonlinear model is proposed for predicting the precise relationship between the input connand voltage and the output displacement of the actuator itself, cross-coupled electrical behaviours of the driving circuit with the actuator, and mechanical characteristics of the driven components of the actuator. Finally experimental results prove that the nonlinear model enhances the measuring of scanning tunneling microscopy by an order ten in comparison with a conventional linear model.

Evaluation on the Driving Characteristics of a Precise Actuator Using Piezoelectric Elements (압전소자를 이용한 정밀 액츄에이터의 구동특성 평가)

  • Kim, S.C.;Kim, S.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.45-52
    • /
    • 1995
  • A prototype of a linear piezoelectric actuator is developed and its dynamic behaviors are investigated. The actuator consists of a driving tip with two stacked piezoelectric elements and a slider. Dynamic characteristics of slider over various vibration lici of the driving tip and changes of normal force acting on the vibratory tip are examined through experiments. The moving direction of slider can be controlled by changing a phase angle between input signals applied to piezoelectric elements. A change of phase difference between input signals also have a great influence on the vibration locus of driving tip. Changes of slider motion due to different vibration loci are examined by experiments.

  • PDF

Vibration Characteristics of a Wire-Bonding Piezoelectric Actuator (와이어 본딩용 압전 액츄에이터의 진동 특성)

  • Kim, Young-Woo;Kim, Kyoung-Up;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.578-582
    • /
    • 2007
  • In this paper, vibration modes and frequencies of a ring-type stacked piezoelectric actuator for a wire bonding transducer system are analyzed using FEM simulations. We implement experiments using a commercial product model of the actuator PZT module which consists of 6 layer ring-type PZT and 7 electrodes, combined bolts, nut and tinut. There are two main results: One is that FEM analysis should consider the effect the harmonic voltage input in order to meet the experimental results. The other is that the current wire bonder using exciting frequency of 136 kHz should be modified in order to improve the actuator and bonding performance because the actuator module has the main longitudinal mode of 145 kHz.

  • PDF

Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system (레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.

Design/Manufacturing/Performance-Test of Stacked Ceramic Thin Actuation Layer IDEAL Using Interdigitated Electrodes (빗살형 전극을 이용한 적층 세라믹 박판 작동층 IDEAL의 설계/제조/성능시험)

  • 이제동;박훈철;구남서;윤영수;윤광준
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.216-220
    • /
    • 2004
  • This paper is concerned with the development of stacked ceramic thin actuation layer IDEAL (InterDigitated Electrode Actuation Layer) using d$_{33}$ actuation mechanism of piezoelectric ceramic. Most of the thin piezoelectric actuators are operated with d$_{31}$ actuation mechanism. Many kinds of piezoelectric ceramic actuators are strived now to improve the actuation performance. One of efforts to improve performance of piezoceramic actuators is the research trying to develop an actuator using the piezoelectric coefficient d$_{33}$ . The piezoelectric coefficient d$_{33}$ is almost twice larger than piezoelectric coefficient d$_{31}$ . Therefore, the induced strain of PZT thin layer with d$_{33}$ 3 actuation mechanism is bigger than that with d$_{31}$ actuation mechanism. The AFC(MIT) and LaRC-MFC$^{TM}$ which is developed by a research team of NASA Langley Research Center used d$_{33}$ actuation mechanism with surface interdigitated electrode to enhance its actuation performance. But their actuation mechanism is not perfect d$_{33}$ actuation mechanism since the interdigitated electrodes are placed at the surface of the actuation layer. In this research, the stacked ceramic thin actuation layer with imbedded interdigitated electrode is designed and manufactured. The actuation strain of stacked ceramic thin actuation layer is measured and compared with the actuation strain of the LaRC-MFC$^{TM}$. The comparison shows that the developed stacked ceramic thin actuation layer can produce 15% more actuation strain than LaRC-MFC$^{TM}$.> TM/.

Kinematical Characteristics of Vibration Assisted Cutting Device Constructed with Parallel Piezoelectric Stacked Actuators (평행한 적층 압전 액추에이터로 구성된 진동절삭기의 기구학적 특성 고찰)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1185-1191
    • /
    • 2011
  • The kinematic characteristics of cutting device significantly affects cutting performance in 2-dimensional elliptical vibration cutting(EVC) where the cutting tool cuts workpiece, traversing a micro-scale elliptical trajectory in a trochoidal motion. In this study, kinematical characteristics of EVC device constructed with two parallel stacked piezoelectric actuators were analytically modeled and compared with the experimental results. The EVC device was subjected to step and low-frequency(0.1 Hz) sinusoidal inputs to reveal only its kinematical displacement characteristics. Hysteresis in the motion of the device was observed in the thrust direction and distinctive skew of the major axis of the elliptical trajectory of the cutting tool was also noticed. Discrepancy in the voltage-to-displacement characteristics of the piezoelectric actuators was found to largely contribute to the skew of the major axis of the elliptical trajectory of the cutting tool. Analytical kinematical model predicted the cutting direction displacement within 10 % error in magnitude with no phase error, but in estimating the thrust direction displacement, it showed a $27^{\circ}$ of phase-lag compared with the measured displacement with no magnitude error.

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

Design Analysis/Manufacturing /Performance Evaluation of Curved Unsymmetrical Piezoelectric Composite Actuator LIPCA (곡면형 비대칭 압전복합재료 작동기 LIPCA의 설계해석/제작/성능평가)

  • Gu, Nam-Seo;Sin, Seok-Jun;Park, Hun-Cheol;Yun, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1514-1519
    • /
    • 2001
  • This paper is concerned with design, manufacturing and performance test of LIPCA ( Lightweight Piezo- composite Curved Actuator) using a top carbon fiber composite layer with near -zero CTE(coefficient of thermal expansion), a middle PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by thigh tweight fiber reinforced plastic layers without losing capabilities to generate high force and large displacement. It is possible to save weight up to about 30% if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature (177 $^{circ}C$ after following an autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detached from a flat mold. The analysis method of the cure curvature of LIPCA using the classical lamination theory is presented. The predicted curvatures are fairly in agreement with the experimental ones. In order to investigate the merits of LIPCA, a performance test of both LIPCA and THUNDE$^{TM}$ were conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERT$^{TM}$.