• Title/Summary/Keyword: Static Load Test

Search Result 989, Processing Time 0.038 seconds

Static load test of the bogie and vibration performance test, dynamic characteristics analysis of the bulk cement car (벌크시멘트화차의 대차 하중시험과 진동성능시험 및 동특성 해석 연구)

  • 홍재성;함영삼;백영남
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.186-193
    • /
    • 2003
  • The object of this study is to ensure the stability of bulk cement cars conducting vibration performance test, dynamic characteristic analysis and static load test of bogie frame. In case of static load test, bogie static load test facility was used. In case of dynamic characteristic analysis, Vampire Software was used. In case of vibration performance test, real bulk cement cars were used in kyeung-bu line. In the results of static load test of bogie frame for bulk cement car, all structures satisfied allowable stress criteria of materials. The vibration performance test and dynamic characteristic analysis results satisfied allowable standards.

Evaluation of Bridge Load Carrying Capacity of PSC Girder Bridge using Pseudo-Static Load Test (의사정적재하시험을 이용한 PSC 거더교의 공용 내하력평가)

  • Yoon, Sang-Gwi;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.53-60
    • /
    • 2019
  • In this study, a method for updating the finite element model of bridges with genetic algorithm using static displacement were presented, and verified this method using field test data for PSC girder bridge. As a field test, static load test and pseudo-static load test were conducted, and updated the finite element model of test bridge using each test data. Finally, evaluated the bridge load carrying capacity with updated model using pseudo-static load test's displacement data. To evaluate the bridge load carrying capacity, KHBDC-LSD, KHBDC and AASHTO LRFD's live load model were used, and compared the each results.

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

The method using dynamic load and static load figures out gust factor of the membrane structure (동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법)

  • Wang, Ben-Gang;Jeong, Jae-Yong;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.19-24
    • /
    • 2008
  • The thesis is for gust factor needing when calculate the wind resistance design. For the gust factor, to the membrane structural model, carry through the wind tunnel test and the static load test. Therefore, at first through the tensile test of the fabric material, designate the material of the membrane structural model. Then, to saddle, wave, arch and point four kinds of basic shape membrane structural models, carry on the wind tunnel test, determine their dynamic load and distortion on lateral direction. Finally, according to distort situation of the membrane structure in the wind tunnel test, carry on the static load experiment outside of the wind tunnel, calculate static load which corresponding with distort. According to dynamic load and the static load, figure out gust factor of these kinds of basic membrane structure.

  • PDF

대구경 소켓경사반력말뚝의 인발거동에 관한 연구

  • 최용규;김상옥;정창규;정성기;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.277-284
    • /
    • 2000
  • Using the large diameter (D = 2,500mm, L = 40m) batter steel pipe piles, designed as compression piles but used as reaction piles during the static compression load test of socketed test piles (D = 1,000mm, L = 40m), static pile load tests for large diameter instrumented rock-socketed piles were performed. The reaction steel pipe piles were driven 20m into the marine deposit and weathered rock layer and then l0m socketed with reinforced concrete through the weathered rock layer and into hard rock layer. Steel pipe and concrete in the steel pile part, and concrete and rebars in the socketed parts were instrumented to measure strains in each part. The pullout amounts of reaction pile heads were also measured with LVDT. During the static pile load test, total compressional load of about 20MN was loaded on the head of test piles, but load above 20MN was not loaded due to lack of loading capacity of loading system. Over the course of the study, maximum pullout amount up to 7mm was measured in the heads of reaction piles when loaded op to 10MN and 1mm of pullout amount was measured. More than 85% of pullout load was transfered in the residual weathered rock layer and about 10% in the soft rock layer, which was somewhat different transfer mechanism in the static compressional load tests.

  • PDF

A Comparative Study on the Bearing Capacity of Dynamic Load Test and Static Load Test of PHC Bored Pile (PHC 매입말뚝의 동재하시험과 정재하시험의 지지력 비교·분석 연구)

  • Park, Jongbae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.19-31
    • /
    • 2017
  • In case of USA, the drilled shaft and the driven pile in the field showed a good correlation in the analysis of the bearing capacity between the dynamic load test and the static load test. However, in Korea, we mainly install the bored pile, which is not widely used overseas and we tried to confirm the reliability of the dynamic load test on the bored pile, because many people questioned the reliability of it. In this study, load tests were carried out on PHC bored piles in LH field (Cheonan, Incheon, Uijeongbu), and the bearing capacity of the dynamic load test (EOID 7times, Restrike 7times) and the static load test (7times) were compared and analyzed. As a result, the average of the bearing capacity of the static load test was 27% higher than that of the dynamic load test (reliability : 0.73, coefficient of variation : 0.3). And the average of the bearing capacity of the static load test (Davisson) was 27% higher than that of the bearing capacity of the dynamic load test (Davisson) (reliability : 0.73, coefficient of variation : 0.2). To reduce the difference between the bearing capacity of the dynamic load test and the static load test, we proposed modified bearing capacity of dynamic load test (base bearing capacity of EOID + skin frictional force of restrike) and difference between the bearing capacities was reduced to 9% (reliability : 0.91, coefficient of variation : 0.2). And the coefficient of variation was reduced to 0.2 and the consistency of analysis increased.

Static Test and Analysis of Wing Support Structure for External Stores (외부장착물지지 주익구조 정적 시험 및 해석)

  • Uhm, Wonseop;Yoon, Jongmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Armed aircraft of a basic trainer class installs external stores under wing box by using pylon and performs an operation such as weapon delivery and jettison, and should be designed to withstand all kinds of loads applied to external stores. The static strength test of pylons and wing box was performed to assess the static strength of pylon and their support structures for substantiation. Based on the test, the structures were verified to fully satisfy a given design requirement. In this paper, methods of test load generation of wing box and pylon, evaluation of test result data and design result of test set-up were presented. Comparing the FEM analysis with the same test data can lead to good match and reasonable deviation between both. Finally, based on the test and the analysis, the static strength of test article was substantiated and the reliability and effectiveness of analysis math model were obtained.

Static Load Test for Verification of Structural Robustness of Composite Oxidant Tank for Space Launch Vehicle (우주발사체용 복합재 산화제탱크 구조 강건성 검증을 위한 정하중 시험)

  • Kim, Hyun-gi;Kim, Sungchan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.98-105
    • /
    • 2021
  • This study presented the results of the static load tests conducted to verify the structural robustness of the composite oxidant tank for a space launch vehicle. First, we introduced the test equipment used in the static load test of the composite oxidant tank, and then described the test requirements that the composite oxidant tank must satisfy. In addition, we presented a test set-up diagram consisting of the static load test fixture, hydraulic pressure, control equipment, and data acquisition equipment, and the load profile of the static load test of the composite oxidant tank consisting of shear, equivalent compression, bending, and combination tests. As a result of load control, we verified the reliability of this test by showing the errors between the input load and the feedback load in each channel according to the increase of the test load, and the feedback error between the channel A and channel B of load cell in each load actuator. As a result of the static load test, the load of the actuator was properly controlled within the allowable error range in each test, and we found that the test specimen did not cause damage or buckling that causes significant structural defects in the required load.

A Comparative Study on Bearing Capacity of Single Pile Based on Calculation Method (산정방법에 따른 단말뚝의 지지력 비교연구)

  • 이영대;심재현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.124-133
    • /
    • 1997
  • Pile load test is good for estimating pile bearing capacity, but using this method is limited by time and cost required. Dynamic and static method is more convenient and economical, but confidence of estimated value by dynamic and static method are lower than that of pile load test. After being compared pile bearing capacity data obtained from pile load test with those of other two methods, the results from this study were summarised as follows. For allowable bearing capacity values greater than 175t per pile, bearing capacity acquired from static method was higher than that acquired from pile load test, whereas bearing capacity acquired from pile load test was higher than that acquired from static method for values under 175 per pile. It was that variance of bearing capacity was large when bearing capacity obtained by dynamic method was higher than 250t. Also bearing capacity based on dynamic method was higher than that based on pile load test. Allowable bearing capacity get from dynamic method suggested that carefull precautions are necessary in application for allowable bearing capacity values higher than 2S0ton per pile.

  • PDF

Comparison and Evaluation of Load Test Methods for Aluminum Car Body (알루미늄 차체 하중 시험 방법에 관한 비교 평가)

  • 서승일;박춘수;신병천
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 2004
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Static load test has been performed up to date to assess structural safety of the carbody. However, static load test is not sufficient to evaluate fatigue strength of the carbody, because fatigue failure is caused by dynamic load. In this study, the established load test methods for carbody are described and the characteristics of the methods are discussed. Also, a testing method to simulate dynamic loading condition is proposed for evaluation of fatigue strength of the carbody. The results by the proposed testing method are compared with the results by the static load test and new findings are discussed.