• Title/Summary/Keyword: Static recrystallization

Search Result 30, Processing Time 0.026 seconds

Effects of Process Variables on Static and Metadynamic Sofetning of SCM 440 (SCM 440 강재의 정적 및 준동적 연화에 미치는 공정변수의 영향)

  • 한형기;김성일;정태성;유연철
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.80-87
    • /
    • 2000
  • The static softening behavior of SCM 440 could be characterized by the hot torsion test in the temperature ranges of 90$0^{\circ}C$~110$0^{\circ}C$and strain rate ranges of 0.05/sec~5/sec. Interrupted deformation was performed with 2 pass deformation in the pass strain ranges of 0.25$\varepsilon$p~3$\varepsilon$p and interrupted time ranges of 0.5~100sec. The dependences of process variables, pass strain ($\varepsilon$i), stain rate ($\varepsilon$), temperature (T) and interpass time (ti), on static recrystallization (SRX) and metadynamic recrystallization (MDRX)were individually predicted from the modified Avrami's equations, The dependence of pass strain on MDRX was neglectable. Comparison of the softening kinetics between MDRX and SRX showed that the rate of MDRX was more rapid than that of SRX for the same deformation variables. Controlled multipass deformations were performed using static and metadynamic recrystallization of SCM 440.

  • PDF

A Study on Meta-Dynamic Recrystallization of 304 Stainless Steels (304 스테인레스강의 준동적재결정에 관한 연구)

  • 한형기;조상현;유연철
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.42-52
    • /
    • 2001
  • The static softening mechanisms of 304 stainless steel were studied by hot torsion test. The interrupted deformation tests were performed In the range of 900~$1100^{\circ}C$ and 5.0$\times$$10^{-2}$- 5.0$\times$$10^0$/sec. The metadynamic recrystallization (MDRX) could be distinguished from the static recrystallization (SRX). Comparison of the softening kinetics between MDRX and SRX showed that the rate of MDRX was more rapid than that of SRX for the same deformation variables. To the exact prediction of MDRX, the MDRX parameter, which could be simultaneously estimated by the interpass time and Zener-Hollomon parameter, was developed. The time lot 50% MDRX, $t_{0.5} was modeled using the deformation parameters : $t_{0.5} = 1.33\times10^{-11}$ $\.\varepsilon^{-0.41}$ D exp(230.3kJ/mol/RT) and the predicted value was very correspondent with the measurement. It was found that the static parameters such as interpass time can control the dynamic states in the several successive deformation process.

  • PDF

Static and Metadynamic Recrystallization of Non-Heat Treated Medium Carbon Steels (비조질 중탄소강의 정적 및 준동적 재결정에 관한 연구)

  • Han C. H.;Kim S. I.;Yoo Y. C.;Lee D. L.;Choo W. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.29-32
    • /
    • 2000
  • The static and metadynamic recrystallization of non-heat treated medium carbon steel(Fe - 0.45wt.$\%C\;-\;0.6wt.\%Si\;-\;1.2wt.\%Mn\;-\;-0.12wt.\%Cr \;-\;0.1wt.\%V \;-\;0.017wt\%$.Ti) were studied by the torsion test in the strain rate range of 0.05 - 5 $sec^{-1}$, and in the temperature range of $900\;-\;1100\;^{\circ}C$. Interrupted deformation was performed with 2 pass deformation in the pass strain range of $0.25 {\varepsilon}_p(peak strain)\;and\;{\varepsilon}_p$, and in the interpass time range or 0.5 - 100 sec. The dependence or pass strain(${\varepsilon}_i$), strain rate( $\dot{\varepsilon}$ ), temperature(T), and interpass time($t_i$) on static recrystallization (SRX) and metadynamic recrystallization (MDRX) were predicted from the modified Avrami's equations respectively. Comparison of the softening kinetics between SRX and MDRX was indicated that the rate of MDRX was more rapid than that of SRX under the same deformation variables.

  • PDF

Study about dynamic/static recrystallization during hot compression of Cast alloy 718 (Cast alloy 718의 고온압축시 동적/정적재결정에 대한 연구)

  • Kim, Nam-Yong;Kim, Jeoung-Han;Yeom, Jong-Taek;Park, Nho-Kwang;Yoon, Jong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.207-210
    • /
    • 2006
  • Behavior of dynamic/static recrystallization during hot deformation of Cast alloy 718 was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructural evolution during hot compression and post heat-treatment was investigated and deformation mechanism were analyzed by stress-strain curve, FE-simulation and microstructure. FE-simulation results show that the temperature difference between top-die and billet has considerable influence on the final shape of compressed specimen. The relation between applied load and processing time was predicted by the FE-simulation.

  • PDF

Recrystallization Controlled Deformation of AISI 4140 (AISI 4140 강재의 재결정 제어변형)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.135-139
    • /
    • 1999
  • The static softening behavior of AISI 4140 could be characterized by the hot torsion test in the temperature ranges of 10$0^{\circ}C$~120$0^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. Deformation efficiency which was based on dynamic materials model was calculated from flow stress curves obtained continuous deformation. Interrupted deformation was performed with 2 pass deformation in the pass strain ranges of 0.25{{{{ epsilon _p}}}} ~3{{{{ epsilon _p}}}} and interrupted time ranges of 0.5~100sec. The dependences of process variables pass strain ({{{{ epsilon _i}}}}) stain rate ({{{{ {. } atop {$\varepsilon$ } }}}}) temperature (T) and interpass time ({{{{ {t }_{i } }}}}) on static recrystallization (SRX) and metadynamic recrystallization .(MDRX) could be indicidually predicted from the modified Avrami's equations. Comparison of the softening kinetics between MDRX and SRX showed that the rate of MDRX was more rapid than that of SRX for the same deformation variables. Controlled multipass deformations were performed using deformation efficiency static and metadynamic recrystallization of AISI 4140.

  • PDF

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • 정호승;조종래;차도진;배원병
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of Die Steels (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • Jeong H. S.;Cho J. R.;Cha D. J.;Bae Y. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.131-135
    • /
    • 2001
  • Evaluation of microstructural changes during open die forging of heavy ingots is important for process control. The objective of the control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects md to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent processes of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

Effect of Hot Interrupted strain on Static Softening of Single Phase Cu-Zn Alloy (고온단속변형량이 단상 Cu-Zn합금의 정적연화에 미치는 영향)

  • 권용환;조상현;유연철
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.169-179
    • /
    • 1995
  • Static restoration mechanism during hot interrupted deformation of Cu-Zn alloy was studied in the temperature range from $550^{\circ}C$ to $750^{\circ}C$ and at a constant strain rate of 0.1/sec. At a given temperature, the hot interrupted deformations were performed with variation of interrupted time $t_i$ form 1 to 50 sec and of interrupted strain ${\varepsilon}_i$ from 0.15 to 0.90. From the analysis of the values of the critical strain of ${\varepsilon}_c$ for tje initiation of dynamic recrystallization and the peak strain of${\varepsilon}_p$, the relationship ${\varepsilon}_c{\fallingdotseq}0.7{\varepsilon}_p$ was obtained. It was clarified that the softening of the interrupted deformation was mainly the static recrystallization and the fractional softening(FS) which was over 30% mostly confirmed this result. The fractional softening of the interrupted time $t_i$ especially and pre-strain. The FS increased with increasing strain rate, interrupted time and pre-strain. The change of microstructures after hot deformation could be predicted by the FS. when the FS was 30~100%, static recrystallization was happened and grain growth was observed at the condition which was $750^{\circ}C$ deformation temperature, 0.45 prestrain and this condition's FS value was over 100%.

  • PDF

Flow Softening Behavior during the High Temperature Deformation of AZ31 Mg alloy (AZ31 Mg 합금의 고온 변형 시의 동적 연화 현상)

  • Lee, Byoung-Ho;Reddy, N.S.;Yeom, Jong-Teak;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.70-73
    • /
    • 2006
  • In the present study, the flow-softening behavior occurring during high temperature deformation of AZ31 Mg alloy was investigated. Flow softening of AZ31 Mg alloy was attributed to (1) thermal softening by deformation heating and (2) microstructural softening by dynamic recrystallization. Artificial neural networks method was used to derive the accurate amounts of thermal softening by deformation heating. A series of mechanical tests (High temperature compression and load relaxation tests) was conducted at various temperatures ($250^{\circ}C{\sim}500^{\circ}C$) and strain rates ($10^{-4}/s{\sim}100/s$) to formulate the recrystallization kinetics and grain size relation. The effect of DRX kinetics on microstructure evolution (fraction of recrystallization) was evaluated by the unified SRX/DRX (static recrystallization/dynamic recrystallization) approaches

  • PDF

Effect of Annealing Conditions on Microstructure and Damping Capacity in AZ61 Magnesium Alloy (열처리조건에 따른 AZ61 마그네슘 합금의 미세조직과 감쇠능에 미치는 영향)

  • Ahn, Jae-Hyeon;Kim, Kwon-Hoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.56-62
    • /
    • 2018
  • Many researchers have studied on the precipitation control after solution treatment to improve the damping capacity without decreasing the strength. However, studies on the damping capacity and microstructure changes after deformation in the solid solution strengthening alloys were inadequate, such as the Al-Zn series magnesium alloys. Therefore, in order to investigate the effect of annealing condition on microstructure change and damping a capacity of AZ61 magnesium alloy. In this study, it was confirmed that the microstructure changes affect the damping capacity and hardness when annealed AZ61 alloy. AZ61 magnesium alloy was rolled at $400^{\circ}C$ with rolling reduction of 30%. These specimens were annealed at $350^{\circ}C$ to $450^{\circ}C$ for 30-180 minutes. After annealing, microstructure was observed by using optical microscopy, and damping capacity was measured by using internal friction measurement machine. Hardness was measured by Vickers hardness tester under a condition of 0.3 N. In this study, static recrystallization was observed regardless of the annealing conditions. In addition, uniform equiaxed grain structure was developed by annealing treatment. Hardness is decreased with increasing grain size. This is associated with Hall-Petch equation and static recrystallization. In case of damping capacity, bigger grain size show the larger damping capacity.