• 제목/요약/키워드: Statistical distribution

검색결과 4,043건 처리시간 0.032초

Novel approach to predicting the release probability when applying the MARSSIM statistical test to a survey unit with a specific residual radioactivity distribution based on Monte Carlo simulation

  • Chun, Ga Hyun;Cheong, Jae Hak
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1606-1615
    • /
    • 2022
  • For investigating whether the MARSSIM nonparametric test has sufficient statistical power when a site has a specific contamination distribution before conducting a final status survey (FSS), a novel approach was proposed to predict the release probability of the site. Five distributions were assumed: lognormal distribution, normal distribution, maximum extreme value distribution, minimum extreme value distribution, and uniform distribution. Hypothetical radioactivity populations were generated for each distribution, and Sign tests were performed to predict the release probabilities after extracting samples using Monte Carlo simulations. The designed Type I error (0.01, 0.05, and 0.1) was always satisfied for all distributions, while the designed Type II error (0.01, 0.05, and 0.1) was not always met for the uniform, maximum extreme value, and lognormal distributions. Through detailed analyses for lognormal and normal distributions which are often found for contaminants in actual environmental or soil samples, it was found that a greater statistical power was obtained from survey units with normal distribution than with lognormal distribution. This study is expected to contribute to achieving the designed decision error when the contamination distribution of a survey unit is identified, by predicting whether the survey unit passes the statistical test before undertaking the FSS according to MARSSIM.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

Cubic normal distribution and its significance in structural reliability

  • Zhao, Yan-Gang;Lu, Zhao-Hui
    • Structural Engineering and Mechanics
    • /
    • 제28권3호
    • /
    • pp.263-280
    • /
    • 2008
  • Information on the distribution of the basic random variable is essential for the accurate analysis of structural reliability. The usual method for determining the distributions is to fit a candidate distribution to the histogram of available statistical data of the variable and perform approximate goodness-of-fit tests. Generally, such candidate distribution would have parameters that may be evaluated from the statistical moments of the statistical data. In the present paper, a cubic normal distribution, whose parameters are determined using the first four moments of available sample data, is investigated. A parameter table based on the first four moments, which simplifies parameter estimation, is given. The simplicity, generality, flexibility and advantages of this distribution in statistical data analysis and its significance in structural reliability evaluation are discussed. Numerical examples are presented to demonstrate these advantages.

A Characterization of Negative Binomial Distribution Truncated at Zero

  • Shanmugam, R.
    • Journal of the Korean Statistical Society
    • /
    • 제11권2호
    • /
    • pp.131-138
    • /
    • 1982
  • Analogous to Singh's (1978) characterization of positive-Poisson distributioin and Shanmugam and Singh's (1992) characterization of logarithmic series distribution, a characterization and its statistical application of the negative binomial distribution truncated at zero are given in this paper. While it is known that under certain conditions the negative binomial distribution truncted at zero approaches the positive-Poisson and the logarithmic series distributions, we show here that the results of this paper approach in limit the results of Singh, and Shanmugam and Singh, respectively. Using the biologicla data from Sampford (1955), we illusrate our results. Also, expressions are explicitly given to test the hypothesis whether a random sample is indeed from a geometric distribution.

  • PDF

A Family of Truncated Skew-Normal Distributions

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제11권2호
    • /
    • pp.265-274
    • /
    • 2004
  • The paper extends earlier work on the skew-normal distribution, a family of distributions including normal, but with extra parameter to regulate skewness. The present work introduces a singly truncated parametric family that strictly includes a truncated normal distribution, and studies its properties, with special emphasis on the relation with bivariate normal distribution.

Al7075-T651의 마찰교반용접된 접합부의 피로균열전파율의 통계적 분포 (Statistical Distribution of Fatigue Crack Growth Rate for Friction Stir Welded Joints of Al7075-T651)

  • 안석환;김선진
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.86-93
    • /
    • 2013
  • This paper deals with the effects of driving force and material properties on statistical distribution of fatigue crack growth rate (FCGR) for the friction stir welded joints of Al 7075-T651 aluminum plate. In this work, the statistical probability distribution of fatigue crack growth rate was analyzed by using our previous constant stress intensity factor range controlled fatigue crack growth test data. As far as this study are concerned, the statistical probability distribution of fatigue crack growth rate for the friction stir welded (FSWed) joints was found to evaluate the variability of fatigue crack growth rate for base metal (BM), heat affected zone (HAZ) and weld metal (WM) specimens. The probability distribution of fatigue crack growth rate for FSWed joints was found to follow well log-normal distribution. The shape parameter of BM and HAZ was decreased with increasing the driving force, however, the shape parameter of WM was decreased and increased with increasing the driving force. The scale parameter of BM, HAZ and WM was increased with the driving force.

포아송 분포를 가정한 Wafer 수준 Statistical Bin Limits 결정방법과 표본크기 효과에 대한 평가 (Methods and Sample Size Effect Evaluation for Wafer Level Statistical Bin Limits Determination with Poisson Distributions)

  • 박성민;김영식
    • 산업공학
    • /
    • 제17권1호
    • /
    • pp.1-12
    • /
    • 2004
  • In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.

Three-Parameter Gamma Distribution and Its Significance in Structural Reliability

  • Zhao, Yan-Gang;Alfredo H-S. Ang
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2002
  • Information on the distribution of the basic random variables is essential for the accurate evaluation of structural reliability. The usual method for determining the distribution is to fit a candidate distribution to the histogram of available statistical data of the variable and perform appropriate goodness-of-fit tests. Generally, such candidate distributions would have two parameters that may be evaluated from the mean value and standard deviation of the statistical data. In the present paper, a-parameter Gamma distribution, whose parameters can be directly defined in terms of the mean value, standard deviation and skewness of available data, is suggested. The flexibility and advantages of the distribution in fitting statistical data and its significance in structural reliability evaluation are identified and discussed. Numerical examples are presented to demonstrate these advantages.

  • PDF

On the Development of Probability Matching Priors for Non-regular Pareto Distribution

  • Lee, Woo Dong;Kang, Sang Gil;Cho, Jang Sik
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.333-339
    • /
    • 2003
  • In this paper, we develop the probability matching priors for the parameters of non-regular Pareto distribution. We prove the propriety of joint posterior distribution induced by probability matching priors. Through the simulation study, we show that the proposed probability matching Prior matches the coverage probabilities in a frequentist sense. A real data example is given.

The General Linear Test in the Ridge Regression

  • Bae, Whasoo;Kim, Minji;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.297-307
    • /
    • 2014
  • We derive a test statistic for the general linear test in the ridge regression model. The exact distribution for the test statistic is too difficult to derive; therefore, we suggest an approximate reference distribution. We use numerical studies to verify that the suggested distribution for the test statistic is appropriate. A asymptotic result for the test statistic also is considered.