• 제목/요약/키워드: Stayed member

검색결과 41건 처리시간 0.021초

강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정 (Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm )

  • 마상수;권태윤;이원홍;안진희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권4호
    • /
    • pp.1-12
    • /
    • 2024
  • 본 연구에서는 강사장교의 비선형 거동과 하모니 서치 알고리즘에 기반한 사장교 부재 단면 결정 방법을 제시하였다. 하모니 서치 알고리즘은 초기값 설정, 하모니 메모리 초기화, 새로운 하모니 메모리 구성 및 하모니 메모리 업데이트의 과정을 반복하여 최적값을 탐색함으로써 사장교 부재 단면을 결정한다. 하모니 서치 알고리즘으로 선정된 주요 부재 단면으로 3차원 강사장교의 비선형 초기형상해석을 수행하였으며, 초기장력과 형상을 고려하여 복잡한 거동특성과 각 부재의 비선형성을 반영한 사장교 주요 부재인 주탑, 보강거더, 가로보 및 케이블의 최적 단면을 결정하였다. 사장교 주요 부재의 단면 결정을 위한 목적함수로는 전체 중량을 사용하였으며, 제약조건으로 한계상태설계법을 바탕으로 하중저항능력과 사용성에 대한 제약조건식 및 보강거더와 가로보 단면의 폭과 높이의 비율을 추가적인 제약조건으로 고려하고, 주탑, 보강거더 및 가로보의 기하 및 재료 비선형성과 케이블 부재의 비선형성에 따라 부재 단면을 결정할 수 있도록 하였다. 최적 단면 결정 결과, 제안한 해석 방법은 사장교의 다양한 설치조건에 따라 최적 단면을 결정할 수 있으며, 비선형성을 고려한 사장교 부재 단면제원을 하모니 서치 기법을 통하여 결정할 수 있음을 확인하였다.

Dynamic analysis of a cable-stayed bridge using continuous formulation of 1-D linear member

  • Yu, Chih-Peng;Cheng, Chia-Chi
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.271-295
    • /
    • 2012
  • This paper presents the solution scheme of using the continuous formulation of 1-D linear member for the dynamic analysis of structures consisting of axially loaded members. The context describes specific applications of such scheme to the verification of experimental data obtained from field test of bridges carried out by a microwave interferometer system and velocimeters. Attention is focused on analysis outlines that may be applicable to in-situ assessment for cable-stayed bridges. The derivation of the dynamic stiffness matrix of a prismatic member with distributed properties is briefly reviewed. A back calculation formula using frequencies of two arbitrary modes of vibration is next proposed to compute the tension force in cables. Derivation of the proposed formula is based on the formulation of an axially loaded flexural member. The applications of the formulation and the proposed formula are illustrated with a series of realistic examples.

Economic performance of cable supported bridges

  • Sun, Bin;Zhang, Liwen;Qin, Yidong;Xiao, Rucheng
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.621-652
    • /
    • 2016
  • A new cable-supported bridge model consisting of suspension parts, self-anchored cable-stayed parts and earth-anchored cable-stayed parts is presented. The new bridge model can be used for suspension bridges, cable-stayed bridges, cable-stayed suspension bridges, and partially earth-anchored cable-stayed bridges by varying parameters. Based on the assumption that each structural member is in either an axial compressive or tensile state, and the stress in each member is equal to the allowable stress of the material, the material quantity for each component is calculated. By introducing the unit cost of each type of material, the estimation formula for the cost of the new bridge model is developed. Numerical examples show that the results from the estimation formula agree well with that from the real projects. The span limit of cable supported bridge depends on the span-to-height ratio and the density-to-strength ratio of cables. Finally, a parametric study is illustrated aiming at the relations between three key geometrical parameters and the cost of the bridge model. The optimization of the new bridge model indicates that the self-anchored cable-stayed part is always the dominant part with the consideration of either the lowest total cost or the lowest unit cost. It is advisable to combine all three mentioned structural parts in super long span cable supported bridges to achieve the most excellent economic performance.

사장교의 내진설계를 위한 동적해석에 관한 연구 (A Study on Dynaniic Analysis for Earthquake Design of cable-stayed Bridges)

  • 이진휴;이재영;이장춘
    • 한국농공학회지
    • /
    • 제36권1호
    • /
    • pp.103-115
    • /
    • 1994
  • The dynamic earthquake analysis of plane cable-stayed bridge structures was formulated and implemented into a computer program which analyzes plane cable-stayed bridge structu- res subjected to initial cable tensions, member dead and live loads and seismic loads. Cable-stayed bridges were modelled as multi-degrees of freedom systems with lumped- mass. Various earthquake responses such as dynamic deflection, bending moment, shear force and cable tension were investigated by the dynamic analyses in the form of the time history analysis. The time history analysis was based on the mode superposition method. The study revealed that Fan-l type cable-syayed bridges is generally superior to other types for the earthquake proof even though aspects of deflection and section force of each type presents respective advantages and disadvantages. The study provided a method to design the sections of cable-stayed bridges under seismic loads with various design parameters related to structural types. The study is expected to be useful for effective design of cable-stayed bridges with conside- ration of earthquake.

  • PDF

Span limit and parametric analysis of cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.271-282
    • /
    • 2019
  • The span record of cable-stayed bridges has exceeded 1,000 m, which makes research on the maximum possible span length of cable-stayed bridges an important topic in the engineering community. In this paper, span limit is discussed from two perspectives: the theoretical span limit determined by the strength-to-density ratio of the cable and girder, and the engineering span limit, which depends not only on the strength-to-density ratio of materials but also on the actual loading conditions. Closed form equations of both theoretical and engineering span limits of cable-stayed bridges determined by the cable and girder are derived and a detailed parametric analysis is conducted to assess the engineering span limit under current technical conditions. The results show that the engineering span limit of cable-stayed bridges is about 2,200 m based on materials used available today. The girder is the critical member restricting further increase in the span length; its compressive stress is the limiting factor. Approaches to increasing the engineering span limit are also presented based on the analysis results.

Second-order inelastic dynamic analysis of cable-stayed bridges using rectangular concrete-filled steel tubular columns

  • Van-Tuong Bui;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.673-693
    • /
    • 2024
  • An advanced numerical method is proposed in this paper for the second-order inelastic dynamic analysis of cable-stayed bridges using rectangular concrete-filled steel tubular (CFST) columns under earthquake loadings for the first time. The proposed method can exactly predict the nonlinear response of the bridges by using only one element per member in simulating the structural model. This comes from considering both the geometric and material nonlinearities in a fiber beam-column element and a catenary cable element. In the fiber beam-column element, the geometric nonlinearities are captured by applying the stability functions, whereas the material nonlinearities are evaluated by tracing the uniaxial cyclic stress-strain curves of each fiber on the cross-sections, which are located at the integration points along the member length. A computer program was developed based on Newmark's average acceleration algorithm to solve the nonlinear equations of motion. The accuracy and computational efficiency of the proposed program were verified by comparing the predicted results with the experimental results, and the results obtained from the commercial software SAP2000 and ABAQUS. The proposed program is promising as a useful tool for practical designs for the nonlinear inelastic dynamic analysis of cable-stayed bridges.

사장교의 설계를 위한 최적 지지조건 결정 (Determination of Optimal Support for Cable-stayed Bridge Designs)

  • 안주옥;윤영만
    • 한국방재학회 논문집
    • /
    • 제3권4호
    • /
    • pp.103-109
    • /
    • 2003
  • 사장교 설계에서 최적의 지지조건을 결정하기 위해 사장교 전체구조계의 교축방향에 대해서 주형의 지지조건에 따른 활하중, 풍하중과 지진하중에 의한 주형, 주탑단면력 및 케이블력의 변화를 3차원 수치해석을 통해 검토하였다. 교축방향의 적합한 경계조건 도입은 주형의 지지점과 주탑의 기초부의 반력뿐만 아니라 주형의 휨모멘트에서 많은 변화를 유도할 수 있다. 본 수치해석의 예에서, 종방향 탄성계수값은 활하중이 작용 할 경우는 약 100tonf/m/bearing, 지진하중이 작용 할 경우는 약 100tonf/m/bearing 에서 최적의 지지조건임을 알 수 있다. 즉 본 해석대상 교량에서 종방향 탄성계수값이 $100{\sim}1000tonf/m/bearing$ 일 경우의 지지조건에서 최적의 지지조건을 얻었으며, 이 조건에서 주탑의 단면력을 합리적으로 결정할 수 있음을 알 수 있다.

용접 및 볼트 연결부 균열을 고려한 사장교 케이블 정착부의 동특성 해석 (Dynamic Characteristics of Cable-Stayed Anchorage considering Cracks at Bolt and Welding Connection)

  • 김철영;김성보;정우태
    • 한국강구조학회 논문집
    • /
    • 제11권4호통권41호
    • /
    • pp.351-362
    • /
    • 1999
  • 용접 및 볼트 연결부 균열이 사장교 케이블 정착부의 동특성에 미치는 영향을 파악하여, 국부적으로 취약한 케이블 정착부의 손상을 현장에서 쉽게 탐지할 수 있는 가능성을 제시하였다. 해석대상 구조물로서 현재 서해안고속도로의 일부로 시공되고 있는 서해대교 케이블 정착부를 선택하였다. 케이블과 정착부의 연결판을 케이블요소 및 쉘요소로 함께 모델링하여 자유진동해석을 수행하였다. 해석결과 케이블 정착단에서 용접부 균열이 발생한 경우, 연결판의 고유진동수가 균열이 발생하지 않은 경우에 비하여 최대 16%정도 작아짐을 확인하였다. 따라서, 연결판의 고유진동수를 측정하여 케이블 정착부의 손상을 충분히 파악할 수 있다고 판단된다.

  • PDF

사장교 주탑 형상에 따른 안정해석 (An Analysis on the Stability for Pylon Types of Cable-Stayed Bridge)

  • 임정열;윤영만;안주옥
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.246-252
    • /
    • 2000
  • The nonlinearity of a cable-stayed bridge results in the large displacement of main girder due to a long span, the large axial forces reduce the catenary action of cables and the flexural stiffness. Therefore, the static and dynamic behavior of pylon for a cable-stayed bridge plays an important role in determining its safety. This study was performed to find the behavior of pylon of cable-stayed bridge for the first-order analysis considering of axial load only and for the second-order analysis considering of lateral deflection due to axial load. The axial force and moment values of pylon were different from the results of the first-order analysis and second-order analysis according to pylon shape and cross beam stiffness when the pylon was subjected to earthquake and wind loads. In the second-order analysis, comparing the numerical values of the member forces for the dynamic analysis, types 3 and 4 (A type) were relatively more advantageons types than types 1 and 2 (H type). Considering the stability for pylon of cable-stayed bridge (whole structural system), types 3 and 4 (A type) with pre-buckling of girder were proper types than types 1 and 2 (H type) with buckling of pylon.

  • PDF