• 제목/요약/키워드: Steady Combustion State

검색결과 125건 처리시간 0.02초

STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES

  • Wang, F.;Zhang, T.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.361-373
    • /
    • 2007
  • In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.

A Steady-State Combustion Modelling of Composite Solid Propellants

  • Hur, Byung-Ki;Kim, Chong-Bo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.473-481
    • /
    • 2001
  • By depicting the transfer of heat and combustion reaction to take place within thin gas layers close to the propellant surface burning in a steady-state fashion, a mathematical equation has been deduced to describe the burning rate of solid propellant as a function of initial grain temperature and chamber pressure. It has been also assumed that chemical reaction could take place in premixing-diffusing zone but were carried out mainly in the reaction-flame zone. All these phenomena taken place in each zone of combustion have been assumed to be steady-state. In the present investigation, the equation, γ=$\kappa$$.$(1/R(T(sub)i+C))(sup)n$.$exp(-E(sub)a/R(T(sub)i+C))(P/z) is being presented and it is compared with experimental data. The proposed model has been tested and evaluated vis-a-vis strand burner data for three different propellants based on CTPB, and it has been found that the deviation of the computed burning rates from the measured rates ranged up to 2%.

  • PDF

백금촉매의 표면반응에 미치는 압력의 영향에 관한 실험 및 이론적 연구 (Experimental and Theoretical Study on the Effect of Pressure on the Surface Reaction over Platinum Catalyst)

  • 김형만
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2000
  • Surface reaction occurs at a certain surface temperature when a catalyst is heated up in a reactive mixture. If homogeneous ignition does not occur, a steady state is observed because the heat produced by the surface reaction is balanced with the heat loss caused by convection, conduction and radiation. The present paper treats the effects of pressure on the surface temperature at the steady state. Hydrogen and oxygen are used as reactants and nitrogen as an inert gas. A spherical platinum catalyst of 1.5 mm in diameter is sustained in the chamber with two wires of 0.1 mm in diameter. As results, there exists a maximum steady temperature at a certain relative hydrogen concentration which increases with total pressure. At the steady state, it can be approximated that the heat release is estimated by the mass transfer considering the effect of natural convection. The experimental results are explained qualitatively by the approximation.

  • PDF

SOFC/가스터빈 혼합발전을 위한 SOFC 생성물의 연소특성 (Combustion Characteristics of the SOFC Products for SOFC/Gas Turbine Hybrid Power Generation System)

  • 이병준;배철한
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.44-52
    • /
    • 2014
  • Solid oxide fuel cell(SOFC) makes electric power using hydrogen or reformed from methane and emits high temperature products that contain flammable species like hydrogen, carbon monoxide and methane which varies with operation condition. SOFC/gas turbine integrated system which uses thermal and chemical energy of the discharges is more efficient than SOFC itself. Burning character of the SOFC products will affect the efficiency and stability of the system. Experiments were conducted to know the characteristics of the flame for two typical composition of SOFC products, i.e. start-up and steady state composition. When coflowing air temperature was higher than $600^{\circ}C$, auto-ignitin occurred for both fuels. Though start-up fuel has higher contents of hydrogen, it makes longer flame than steady state composition. It was inferred that the amount of oxidizer necessary to burn makes this phenomenon. Steady state composition fuel was unstable since it contains lots of water. Nozzle that had 6 holes, distance between each hole was 16.7 times of hole diameter, improved the stability of the flame.

Expansion Tube 내의 램 가속기 유동장의 수치 연구 (Numerical Investigation of Ram Accelerator Flow Field in Expansion Tube)

  • 최정열;정인석;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1997년도 제8회 학술강연회논문집
    • /
    • pp.43-51
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the experiments performed to investigate the ram accelerator flow field by using the expansion tube facility in Stanford University. Navier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state assumption shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$+$O_2$+$17N_2$, it fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$+$O_2$+$12N_2$, mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. The experimental result is revealed to be an instantaneous result during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

자체 예열식 촉매 열 교환식 연소특성 (The Combustion Characteristice of the Self Preheating Type Catalyic Heat Exchanger)

  • 유상필;송광섭;서용석;조성준;류인수
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2001년도 춘계 학술발표회 논문집
    • /
    • pp.45-52
    • /
    • 2001
  • 촉매연소의 응용기기 개발을 위한 연구의 일환으로, 촉매연소가 도입된 열교환기에 대한 연소특성을 분석하였다. 정상상태에서 촉매연소를 이용한 혼합가스의 예열과 가열매체에 대한 열 공급이 동시에 이루어지도록 장치를 구성하고, 특성실험을 수행하였다. 혼합가스의 예열온도, 유속, 당량비 등에 대한 연소특성을 분석하고, 촉매 층의 온도분포에 따른 연소특성도 살펴보았다. 제한된 온도범위 내에서 연소반응이 정상상태에 도달되는 것은 촉매연소 기기 개발에 매우 중용한 요소이며, 이를 위해서 혼합가스의 예열온도, 유속 당량비 등이 일정한 범위에서 제어되어야 하고, 촉매 층의 열평형이 이루어져야 됨을 알았다.

  • PDF

기화식 석유버너의 설계기술 향상 연구 (Study on the Enhancement of Design Technology for the Evaporation Pot Type Kerosene Burner)

  • 심성훈;김석준;길상인;홍용주;윤진한;김인규;김영수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.47-57
    • /
    • 1998
  • Characteristics of evaporation, flame propagation at moment of ignition and steady state combustion, and flow characteristics of combustible mixture have been investigated by experiments and computational simulation for the evaporation pot type kerosene burner. The results show how to design the evaporation pot in order to minimize the sticking of residual tar, and also indicate that symmetrical flame propagation along the flame ring from the kernel of ignition is achieved by modication of the shape of ignition part. In the case of steady state combustion, the uniform distribustion of flame at each flame hole is accomplished by proper modification of the piping instruments. The improved design of the structure and parts of the kerosene burner make up enhancement of flame stability and considerable reduction of CO and bad smell emission at moment of ignition.

  • PDF

로켓엔진의 연소 불안정 해석을 위한 난류 모델링의 수치적 연구 (Numerical Study of Turbulence Modeling for Analysis of Combustion Instabilities in Rocket Motor)

  • 임석규;노태성
    • 한국추진공학회지
    • /
    • 제6권2호
    • /
    • pp.75-84
    • /
    • 2002
  • 고체 추진 로켓 내부 연소실의 비정상 유동을 수치적으로 해석하였다. 완전 보존식을 이용하여 2 차원 축-대칭 연소실 안의 연소 불안정을 해석하기 위한 수치 기법을 구성하였는데 비정상 유동을 해석하기 위한 수정된 $\kappa$-$\varepsilon$ 난류 모델이 사용되었다. 이산화한 지배 방정식은 연관된 경계 조건을 포함하여 dual time-stepping 방법으로 시적분 하였다. 정상 상태의 계산을 기반으로 연소실 내의 천이 압력파의 비정상 상태를 수치적으로 모사하기 위하여 압력 펄스 및 압력 변동을 연소실 상단에 부과하였다. 로켓 모터 연소실 내의 다양한 정상 상태 및 비정상 상태의 특성을 계산 및 해석하였다.

유동층 연소로에서 유.무연탄 혼합 연소법을 이용한 국내산 저질 무연탄의 활용에 관한 연구 (A Study on the Use of Low-Grade Domestic Anthracite by Anthracite - Bituminous Coal Blend Combustion in a Fluidized Bed Combustor)

  • 정종현;조상원
    • 한국환경과학회지
    • /
    • 제6권3호
    • /
    • pp.267-276
    • /
    • 1997
  • It has been studded that combustion and the production of air pollution of anthracite - bituminous coal blend In a fluidized bed coal combustor, The objects of thIns study were to investigate mixing characteristics of the particles as well as the combustibility of the low grade domestic anthracite coal and Imported h19h calorific bltununous coal in the fluidized bed coal combustor. They were used as coal samples ; the domestic low grade anthracite coal with heating value of 2,010kca1/kg and the Imported high grade bituminous coal with beating value of 6,520kca1/kg. Also, the effects of air flow rate and anthracite fraction on the reaching time of steady state condition have been studied. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 300sc1h which was the fastest. It has been found that $O^2$ and $CO^2$ concentration were reached steady state at about 100 minute. It has been found that $O^2$ concentration decreased and $CO^2$ concentration increased as the height of fluidlzed bed Increased. It was found that splash zone was mainly located from 25cm to 35cm above distributor. Also, as anthracite traction Increased, the mass of elutrlatlon particles Increased, and $CO^2$ concentration decreased. As gk flow rate Increased,$O^2$ concentration decreased and $CO^2$ concentration increased. Regardless of anthracite fraction and flow rate, the uncombustible weight percentage according to average diameter of elutriation particles were approldmately high In the case of One Particles. As anthracite traction and k now rate Increased, elutriation ratio Increased. As anthracite fraction was increased, exit combustible content over feeding combustible content was Increased. Regardless of anthracite fraction, size distribution of Ued material from discharge was almost constant. Over bed temperature 85$0^{\circ}C$ and excess air 20% , the difference of combution efficiencies were little. It is estimate that the combustion condition In anthracite-bituminous coal blend combustion is suitable at the velocity 0.3m/s, bed temperature 85$0^{\circ}C$, the excess air 20%.

  • PDF

자동차 엔진 방열기의 뱅각 성능 및 방열 면적 예측에 관한 연구 (A Study on the Prediction for the Performance and the Size of the Vehicle Radiator)

  • 박찬국;이종범;엄호룡;정우인
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.117-127
    • /
    • 1997
  • To maintain the reasonable temperature in the engine is very important to keep the steady combustion state of engine and to prevent increasing of lubricant consump- tion, deteriorating of lubricant, shortening of the life time of engine and decreasing of material strength. The method of energy balance for devided elements of radiator is considered to analyse the performance of radiator. Th data of engine test and vehicle cooling tunnel test are applied to program for calculation of radiator outlet temperature, and this result is compared with outlet temperature of vehicle cooling tunnel test. As a result, the radiator outlet temperature by numerical analysis agrees well with that by experiment. It is concluded that this simulation program is available in developing the cooling system for a new car.

  • PDF